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INTRODUCTION

The Upper Kissimmee Chain of Lakes Limnetic and Material Budget Study 1is
a five year water quality study of Lakes East Tohopekaliga, Tohopekaiiga,
Cypress, Hatchineha, and Kissimmee (Fig. 1). The general purpose of this
program is to establish a limnetic and tributary water chemistry data base for
the major lakes in the Upper Kissimmee River Basin. Specifically, the water
chemistry data will be used along with the necessary hydrological data to:
(1) Identify spacial variations and temporal trends in lake water
guality and relate lake water quality to tributary water guality.
Investigate the effects of the discharge from one lake on the water
quality of a receiving lake downstream.
(2) Relate inflow water quality to generalized land use. Determine
nutrient loadings from each major source including surface waters
(point and nonpoint source estimates), rainfall, and groundwater.
Calculate nutrient budgets for each lake.
(3) Assess the trophic state and eutrophication potential of each lake.
Compute maximum allowabie nutrient loading rates for each lake by

means of an input-output model. Prioritize management strategies.
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This program began in FY 1980-81 with a comprehensive literature survey
of water quality studies conducted in the Kissimmee Basin and the creation of
a hydrological and water quality monitoring network for Lake Tohopekaliga and
East Lake Tohopekaliga. In October 1981, the routine monitoring of these two
lakes was initiated. Also during FY 1981-82, the monitoring network was
expanded to include lLakes Cypress, Hatchineha, and Kissimmee. Although
routine collection of hydrology and water guality data from these lakes and
their tributaries did not begin until October 1982, some reconnaissance
sampling was conducted on these lakes in the spring and summer of 1982.
Currently, monitoring of all five lakes is continuing and is scheduled to end
in September 1984, resulting in three complete years of data for the upper two
Takes and two complete years of data for the lower three lakes.

This is the first annual report of the study. It is primarily concerned
with the results of the first year of data collected from Lake Tohopekaliga
and East Lake Tohopekaliga. However, some water guality data from Lakes
Cypress, Hatchineha, and Kissimmee are also presented. The study results will
be updated in a second report to be completed in April 1984. The final report
on the project will be presented as a SFWMD Technical Publication scheduled
for completion in May 1985.

The south Florida drought persisted through the earlier part of the first
year of sampling. Consequently, there was not much flow into or out of these
lakes until the spring of 1982. In contrast, heavy rains throughout the
summer and fall resulted in considerable flow through the chain of lakes.

This allowed the study of the upper two lakes during both dry and wet
conditions. As will be shown in the results, these inflows exerted a major

influence on lake water quality.



Kissimmee Chain of Lakes Limnetic and Material Budget Study.

SUMMARY AND FINDINGS

This report contains preliminary results from the first year of the

Lake

Tohopekaliga, East Lake Tohppekaliga, and their tributaries were sampled

monthly from October 1981 tp September 1982.
network was established so
calculated.

and Kissimmee from April to

I.

IT.

Tributary Water Qualit
1.

Water and Material Bud

1.

Water samples

Phosphorus levels
historic levels.
the cause for thi
appears to be the
discharges from t
plants.
The highest nitro
the West Kissimme

to Lake Tohopekal

The major inflows
rainfall, and 5-6
inflow. Boggy Cr
rainfall contribu

The major source

A hydrologic data collection
that water and material budgets could be

were also collected from Lakes Cypress, Hatchineha,
September. The major findings are as follows:
4
in Shingle Creek were appreciably lower than
Although it is premature to conclusively determine
5 improved ambient quality, a contributing factor

reduced phosphorus levels in the wastewater

he Mcleod and Sand Lake Roads wastewater treatment

gen and phosphorus concentrations were recorded at
p City Ditch and the Judges Dairy site, tributaries
iga.

get

to East Lake Tohopekaliga were Boggy Creek,

2, which together represented 89% of the total

eek contributed the most phosphorus (49%) while

ted the most nitrogen (33%).

of water to Lake Tohopekaliga was Shingle Creek

(41%), followed by rainfall (23%) and the St. Cloud Canal (22%).

These inflows, ca

ilectively, contributed almost 90% to the total
4




inflow. Shingle Creek contributed the most phosphorus (65%) and
nitrogen (41%).

The nitrogen and phosphorus loads associated with the discharge of
sewage treatment plant effluent 1nto Shingle Creek were equivalent
to 76% and 42%, respectively, of the total nitrogen and phosphorus
loads attributable to the creek.

Controllable nonpoint sources and point sources accounted for
approximately equal amounts (48 and 42%, respectively) of the total
phosphorus load to Lake Tohopekaliga. Point sources contributed the
most nitrogen (41%) while controllable nonpoint sources contributed

the teast (23%).

11I. Limnetic Water Quality

1.

Lake Tohopekaliga displayed substantially higher levels of nitrogen
(2.33 mg/L), phosphorus (0.303 mg/L), conductivity (269
micromhos/cm), and chlorophyll a (68.3 mg/m3) than East Lake
Tohopekaliga (0.72 mg/L, 0.020 mg/L, 145 micromhos/cm, and 5.3
mg/m3, respectively).

Wwhile East Lake Tohopekaliga is fairly homogeneous, water quality
varies in Lake Tohopekaliga, generally increasing from north to
south for total nitrogen, chlorophyll a, turbidity, and decreasing
for color and ortho and total phosphorus.

Inorganic nitrogen to orthophosphorus ratios suggested that East
Lake Tohopekaliga is nitrogen limited; however, most observations
for inorganic nutrients were below detection. Ratios of Total P to
Total N indicated phosphorus limitation. In Lake Tohopekaliga the
ratios of both the inorganic and total constituents suggested that
the lake is most likely nitrogen Timited.

5



Iv.
1.

Trophic state Assessme

There is a tendency for both inorganic nitrogen and orthophosphorus

to convert to the
Tohopekaliga.
system by either

blooms of Anabena

south end of Lake

organic form in the south end of Lake

There is evidence that nitrogen is being added to the

nternal cycling or nitrogen fixation. Large
sp. and Anacystis have been documented in the

Tohopekaliga. The former is a nitrogen fixer, and

both are considered indicators of highly eutrophic Takes.

In Lake Tohopekal

nitrogen, and chi

iga, lakewide monthly averages of phosphorus,

prophy11 a levels have been decreasing over the

last two years. More data are necessary to determine whether this

decline is in response to reduced Shingle Creek phosphorus

concentrations or

Trophic state ind
Lake Tohopekaliga
to hypereutrophic
The modified Voll
East Lake Tohopek
underestimated to
output models per
the error may be
water budget. Sp
to model error.

with other models

is a cyclical phenomenon.

nt and Model Evaluation

icators and trophic state indices classify East

as mesotrophic and Lake Tohopekaliga as eutrophic
bnweider (1976) model overestimated the average
aliga phosphorus concentration and significantly
tal phosphorus for Lake Tohopekaliga. Other input-
Formed similarly. For Lake Tohopekaliga, part of
fue to the inaccuracy of the Lake Tohopekaliga
acial and temporal variations could also contribute

In the future, this model should be evaluated along

to determine the best model(s) for these lakes.

Determining maximym allowable nitrogen loading rates to Lake

Tohopekaliga will

be difficult unless internal nitrogen loadings are
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guantified and incorporated in the nitrogen loading model and an
improved water budget is available.

Because lake chilorophyll is significantly correlated with phosphorus
and nitrogen concentrations, future chlorophyll levels might be

predicted from future nutrient loading rates.



A list of surface infl

Tohopekaliga and Lake Tohop

water quality stations are
tributaries, several urban

on runoff quatity from the

shallow groundwater wells (
the water quality of seepage inflows,

located in Kissimmee to est

on the lakes.

East Lake Tohopekaliga and

Tohopekaliga was sampled mg

Lake water g

MATERIALS AND METHODS

ow/outflow quality stations for East Lake
ekaliga is given in Table 1. The locations of all
shown in Fig. 2. In addition to the major

and rural ditches were sampied to gain information
small watersheds around these lakes. Also, three
w15 ft.) were sampled around each lake to determine
and a rainfall quality station was
imate the quality of precipitation falling directly
uality was determined by sampling four stations in
nine stations in Lake Tohopekaliga. Lake

re intensively because of previously identified

areal variations in water quality.

Different techniques w

(Table 1).

were calculated from continuous stage records.

instantaneous flow rates we

of sample collection.

Daily dischargg

At 1

ere used to estimate flow from the tributaries

s from major tributaries and several minor inflows
For most other inflows,

re measured with either floats or dye at the time

wo stations, Judge's Dairy pump and Partin pump,

discharge was estimated frgm the pump discharge rate and number of hours

pumped.

Other hydrological me3dsurements included groundwater seepage, rainfall,

evaporation, and lake stage

groundwater levels in 16 p]
stations around East Lake ]

Tohopekaliga. Evaporation

Seepage was estimated by monthly measurements of

.

ezometers. Rainfall was determined from three
[ohopekaliga and four stations around Lake
pan data collected at Kissimmee was used to
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TABLE 1.

Map I.D.
East Lake Tohopekaliga

SURFACE INFLOW/OUTFLOW WATER QUALITY STATIONS

Name

1

S VU A

Tohopekaliga

9

10
11
12

13

14

15

16

17

18

19

20

21

1/ Flow measured at time of sample collection

S$-62

Jim Branch
Boggy Creek
Dakota Ditch

$-59 (outflow)

Mi11 Slough

East Kissimmee City Ditch
West Kissimmee City Ditch
Judge's Dairy Pump

Partin Canal

Shingle Creek - West
Shingle Creek - East

Partin Pump

St. Cloud Canal - South
Pieasant Hi1l Ditch
Overstreet Ditch
Johnson Ditch

Whaley Ditch

Partin Ditch-North
Partin Ditch - South

S-61 {outflow)

9

Hydrology

SFWMD stage recorder
SFWMD stage recorder
USGS stage recorder

Instantaneous velocity
measurements (dye method) 1/

SFWMD stage recorder

SFWMD stage recorder
SFWMD stage recorder
SFWMD stage recorder
SFWMD pump timer
SFWMD stage recorder
USGS stage recorder

None - assumed to be
same as #1 above

SFWMD pump timer

Assumed equal to $-59
discharge plus discharge
from St. Cloud STP

Instantaneous velocity
measurements (float method)

Instantaneous velocity
measurements (float method)

Instantaneous velocity
measuyrements (float method)

Instantaneous velocity

measurements (float methad)

Instantaneous velocity

measurements (float method) 2

Instaneaneous velocity
measurements (float method)

SFWMD stage recorder

— it {— |#— |—
e . e T ..

=
S



L
KE TOHOPEKALIGA

Boo

5-61
&
9 i 2 3
MILES
Fig. 2. Lake Tohopgkaliga and East

H -G i
1 1
ST.CoOUD 1 !
CANAL !
P
-~
/ - : i, : AN
R |
. - i .
' K
t, L €
‘ \ S
Ty
\ ‘.f -\‘_;\“
b '
oS
i
RS ot
A WHALEY D!TCH
-~
4
~ L } Vi
viB B o T
- . - |
: = ] o~
{3 1 PARTINHITCM NORTH '
LJ‘:‘ /
~. \____a’-.-."—.. \\-o[,._’
FARTIN DITCH
20

AQ

Ao4 .
'
® ;
r
5-59 P
v DAXOTA o
3 DITCH - T
4+ - A v R

. -‘—‘—fﬁf} 3

@ Laxe
W suRFacE waTER TNFLOW-GUTFL o
& srRuUNDWATER
RAINWATER
w—— BASIN BOUNDARY
SUB BAS!N BOUNDAR'Y

Lake Tohopekaliga Sampling Stations




estimate lake evaporation. An evaporation pan coefficient of 1.0 was used.
East Tohopekaliga lake stage was measured at S-59 and S-62. The stage of Lake
Tohopekaliga was measured at S-61 and at a U.5.G.S. recorder Tocated in the
north end. The interpretation of hydrological data and the preparation of
water budgets were performed by the SFWMD Water Resources Division.

Because hydrological data were collected at varying frequencies, variouds
methods had to be used to calculate nutrient loadings from each inflow.
Appendix A details the methodology used to calculate loadings from surface
inflows, point source discharges, rainfall, and seepage.

The parameters sampled and the frequencies of collection are shown in
Table 2. Lake and tributary stations were monitored monthly for most
parameters. Groundwater stations were sampled quarterly. Rainwater samples
were collected daily, frozen, and composited over a month-long period.

Samples from lakes and tributaries were taken within 0.5 meters of the
water surface. Dissolved oxygen, temperature, pH, and specific conductance
were measured in situ with a Hydrolab Series g0o0(R). samples were placed in
acid-rinsed plastic bottles (filtered if required) and transported on ice to
the laboratory for analysis. Standard SFWMD sampling and analytical
procedures are described in more detail by Federico et al. (1981).

In addition to the above, phytoplankton samples were collected in Aprii
and August 1982 to determine algal species and abundance. Composite samples
were collected from surface and 2.0 meter depths. Samples were analyzed by
the SFWMD Environmental Sciences Division.

Primary productivity was measured in August at two sites in Lake
Tohopekaliga. The light and dark bottle technique used was described by
Marshall (1977). Bottles were suspended at 0.2 and 2.0 meter depths and
incubated for six hours.

11



TABLE 2. WATER QUA

Station Type

Lakes and Tributaries

Groundwater

Rainwater

Sampling Frequency

Manthly

Qyarterly
{December, March,
June, September)

Semi-yearly
(February, August)

Quarterly

Daily collection
Monthly composites

12

LITY PARAMETERS AND SAMPLING FREQUENCIES

Parameters

NO3, NOz, NHg, TKN,
ortho and total P,
alkalinity, C1, TOC,
turbidity, pH,
conductivity, D.O.,
temperature, color

Secchi depth,
chlorophyil a
(lakes only)

S04, total Fe, total
susp. solids, Na, K,
Ca, Mg, hardness,
$i0s, F

Trace metals

NO3, NO2, NHa, TdKN,
ortho and total
dissolved P,
alkatinity, CI1,
conductivity, color,
Na, K, Ca, Mg,
hardness, S04, pH

NO3, NOp, NHgq, TKN,
ortho and total P,
C1, conductivity




RESULTS AND DISCUSSION
Tributary Water Quality

Introduction

This section will describe the general water quality characteristics of
the lakes' inflows and outflows and will be followed by a section describing
the flow-weighted nutrient concentrations. Rainfall and groundwater quality
will also be provided.

A complete data set is available for the East Lake Tohopekaliga
tributaries and many of the Lake Tohopekaliga tributaries. Certain tributary
stations to Lake Tohopekaliga have incomplete data sets due either to
insufficient water to sample (Johnson Ditch, Pleasant Hill Estates, and
Overstreet Ditch), to changes in the station location (West Shingle Creek
site), or to canal improvements which prevented sample collection (Judges

Dairy).

General Water Quality

fFast Lake Tohopekaliga:

Generally, the water delivered to East Lake Tohopekaliga was soft and low in
dissolved solids as indicated by the low specific conductance and the low
levels of cations and anions. The sampled tributaries were generally acidic
with average pH levels ranging from a low at Jim Branch of 4.4 units to a high
of 6.4 units at the Boggy Creek site. The acidic pH levels probably result
from the leaching of organic acids from the relatively undisturbed natural
watersheds surrounding East Lake Tohopekaliga, especially in the north
(Kaufman, 1970). Average color was lowest in the St. Cloud area (50 Pt units)
and highest at the Jim Branch site (307 Pt units).

13



The daytime dissolved ¢
the Boggy Creek and S-62 sif
had average dissolved oxyger
standard for Class III recef

Average turbidity, susy
in all the tributaries. Dig
Jim Branch site (18.0 microg

Average total nitrogen
low of 0.78 mg/L at the Dakd
at 5-62 in Lake Hart (Fig. 3
nitrogen was in the inorganf
nitrate and ammonium while 4
site had a higher percentagd
inorganic nitrogen levels at

The highest mean total
Creek (0.129 mg/L). Station

(Fig. 4). Appendix B presen

xygen levels were consistently above 5.0 mg/L for
es. The Dakota Ditch and Jim Branch sites both
values and discrete values less than the 5.0 mg/L
ving waters (FAC Chapter 17-3).

ended solids, and most heavy metals were very low
solved manganese was comparatively higher at the
rams/L).

concentrations in the tributaries ranged from a

ta Avenue site in St. Cloud to a high of 1.51 mg/L
).

¢ form.

Among all stations, from 3% to 15% of the
Boggy Creek had almost equal levels of
he Dakota Avenue Ditch site and the Jim Branch
s of ammonium (67% and 80%, respectively). The
the 5-62 site were predominantly nitrate (73%).
phosphorus concentration was measured at Boggy

$-62 had the lowest values, averaging 0.034 mg/L

ts a summary of the average water quality data for

the tributaries, rainfall, and groundwater around East Lake Tohopekaliga.

Lake Tohopekaliga

Generally, the inflows
The average specific conduct
North Partin Ditch to a high
tributaries were generally a
4.2 units at the Johnson Dit

Kissimmee City Ditch site.

to Lake Tohopekaliga were soft to moderately hard.
ance ranged from a tow of 142 micromhos/cm at the
of 580 micromhos/cm at Judges Dairy. The

cidic with average pH values ranging from a low of

ch site to a high of 7.1 units at the West
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Color exhibited extreme variability ranging from a low of 40 Pt units at
structure $S-59 to a high of 977 Pt units at the Johnson Ditch site. The color
of the tributary water appears lower in the mostly urban and developing urban
sites in the northern part of the lake basin and higher in the rural and
undeveloped sites around the southern half of the lake.

Average daytime dissolved oxygen levels for ail tributaries were less
than the 5.0 mg/L criteria for Class III waters except the Shingle Creek sites
(West, 6.2 mg/L; east, 6.9 mg/L), Mill Slough (6.3 mg/L), S-59 (6.3 mg/L), the
North Partin Ditch (5.0 mg/L), and the St. Cloud Canal (5.8 mg/L). The
Shingle Creek sites were the only sites which consistently had dissoived
oxygen levels greater than 5.0 mg/L.

Levels of turbidity and suspended solids were generally low. The average
total suspended solids level at Judges Dairy (51.0 mg/L) is probably not
representative because ditch bank and canal improvements were taking place
during part of the study period.

Most of the heavy metal concentrations were quite low. However, the West
Kissimmee City Ditch downstream of the Kissimmee main wastewater treatment
plant did have relatively high levels of copper and manganese, and higher
levels of lead than any of the other tributaries to Lake Tohopekaliga.

Average total nitrogen concentrations in the tributaries to Lake
Tohopekatiga ranged from a Tow of 0.80 mg/lL at structure 5-59, upstream in
East Lake Tohopekaliga, to a high of 18.50 mg/L in the West Kissimmee City
Ditch, downstream of the Kissimmee main wastewater treatment plant (Fig. 3).
Among most stations, less than 20% of the total nitrogen was due to inorganic
nitrogen. The inorganic levels exceeded 20% at the South Partin Ditch site
(224), the Judges Dairy site (59%), the St. Cloud Canal site downstream from
the City of St. Cloud wastewater treatment plant discharge (61%), and the West
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Kissimmee City Ditch site (78%). The inorganic nitrogen at the Shingle Creek,

Mi1l Slough, the St. Cloud Qanal, and the North Partin Ditch sites was

composed of mostly nitrate. | I
predominantly ammonium.

The highest average total
Kissimmee City Ditch (4.789 mg
which exceeded the next highes
east site, 0.550 mg/L)} by more
phosphorus average was recorde
prevailed («»50%) at all sitef
(Pleasant Hill Estates, $-59

Overstreet Ditch, and the Part

norganic nitrogen at the other stations was

phosphorus Tevels were measured at the West
/L) and at Judges Dairy (3.836 mg/L), both of
t mean phosphorus concentration {Shingle Creek
than six times (Fig. 4). The lowest total
d at statfon S-59 (0.031 mg/L). Orthophosphorus
except the rural and agricultural sites
Whaley Canal, North and South Partin Ditch,

in pump).

The average groundwater concentrations of inorganic nitrogen were high

(5.34 mg/L). The high average

concentration, however, is the resuylt of

extremely high nitrate leveld at one site (BP-9) Tocated on the northeast side

of Lake Tohopekaliga. Nitratle

at this one site averages 11.7 mg/L and was

over 5 times greater than thel combined average total dissolved nitrogen (TdKN

+ NOy) concentration (2.2 mg/L
sites. [t appears Tikely that

the elevated nitrogen levels.

) of the other two groundwater observation
fertilization practices may be contributing to

The average orthophosphorus Tevels in

groundwater were 0.052 mg P/L|and less than the average surface water

concentrations at most sampling sites. Appendix C shows the average water

quality for the tributaries, groundwater, and rainfall around Lake

Tohopekaliga.
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Flow-Weighted Nutrient Concentrations

Flow-weighted nutrient concentrations for Lake Tohopekaliga and East Lake
Tohopekaliga inflows were calculated by dividing the total mass of nutrients
entering the lake by the annual discharge for the study period (Tables 8 and
10 in Water and Material Budget section). Flow-weighted nutrient
concentrations are usually better estimates of the quality entering a lake
since the water quality of many tributaries are affected by runoff events.

Partin Pump and Judges Dairy flow-weighted concentrations have not been
computed for this study. Because of the method used to calculate discharge
(see Appendix A), flow-weighted concentrations for these sites had little
meaning.

East Lake Tohopekaliga

Flow-weighted total phosphorus and total nitrogen concentrations ranged
from a high of 0.16 mg/L at the Dakota Ditch and 1.61 mg/L at Jim Branch,
respectively, to a low of 0.03 mg/L at $S-62 and 0.66 mg/L at the Dakota Ditch,
respectively (Table 3). Very little difference was apparent between the
average nutrient concentrations and the flow-weighted concentrations for any
of the measured inflows. This indicates that there is apparently no strong
relationship between the amount of discharge and the concentration of
nutrients delivered to East Lake Tohopekaliga.

Lake Tohopekaliga

The highest flow-weighted concentrations for both phosphorus and nitrogen
were at the West Kissimmee City Ditch (4.58 mg/L and 17.48 mg/L, respectively)
and were due to high nutrient levels in the water discharged from the
Kissimmee Main Wastewater treatment plant (Table 4). The next largest flow-
weighted phosphorus concentration 0.45 mg/L (at Shingle Creek) was one order
of magnitude less than at the West Kissimmee City Ditch. The lowest

19



TABLE 3.

Inflow
Boggy Creek
Rainfall
S-62

Seepage
Jakota Ditch

Jim Branch

AVERAGE AND FL(
CONCENTRATIONS

Tot

Average
0.13

0.09
0.03
0.04
0.06
0.12

Flow Weighted Average

(mg/L)

al Phosphorus

Flow-weighted

0.14
0.08
0.03
0.04
0.16
0.08

0.08

20

DW-WEIGHTED TOTAL PHOSPHORUS AND TOTAL NITROGEN
FOR EAST LAKE TOHOPEKALIGA TRIBUTARY INFLOWS

Total Nitrogen

(mg/L)

Average Flow-weighted
1.06 1.12
1.42 1.42
1.51 1.44
1.79 1.58
0.78 0.66
1.45 1.61

1.36




TABLE 4. AVERAGE AND FLOW-WEIGHTED TOTAL PHOSPHORUS AND TOTAL NITROGEN
CONCENTRATIONS FOR LAKE TOHOPEKALIGA TRIBUTARY INFLOWS

Inflow
Shingle Creek

St. Cloud Canal
Mi11 Slough
Johnson Ditch

S. Partin Ditch

N. Partin Ditch

E. Kissimmee Ditch
W. Kissimmee Ditch
Partin Canal
Seepage

Rainfall

Flow Weighted Average

Total Phosphorus

(mg/L)
Average Flow-weighted

0.55 0.45
Q.25 0.11
0.20 0.19
0.35 0.20
0.17 0.08
Q.07 0.06
0.29 0.38
4.79 4.58
0.46 0.31
0.38 0.10
0.09 0.08

0.28

21

Total Nitrogen

Average
1.85

3.63
1.7%
5.60
2.63
1.60
1.12
18.50
1.67
5.95
1.42

(mg/L)

Flow-weighted

1.62
1.01
1.35
5.78
2.24
1.41
1.26
17.48
1.69
5.82

1.42

1.6l



flow-weighted nutrient concentrations occurred at the St. Cloud Canal

structure, S-59, (phosphorus

i

Partin Ditch (phosphorus:

The flow-weighted nutr]

Ditch were slightly greater

concentrations, while the J¢

slightly greater only for n

minor. For the remaining %y

0.11 mg/L, nitrogen: 1.01 mg/L) and the North

0.06 mg/L; nitrogen: 1.41 mg/L).

ent concentrations in the East Kissimmee City
than the average annual nitrogen and phosphorus
shnson Ditch and Partin Canal concentrations were
trogen. These differences, however, appear to be

ributaries, the flow-weighted nutrient

concentrations were less than the annual average concentration.

Previous studies (Feds
shown that Shingle Creek nuj
flows. These reports sugge
levels experienced during 1
relatively lower nutrient 1
These data also suggest tha

The St. Cloud Canal ap
from the relatively large d
the average annual concentr
weighted nitrogen (1.01 mg/
reduced to less than half t
appears to be the result of
concentration in the 5t. C

conditions, nutrient concen

discharge into the canal fr|

trations

srico and Brezonik 1975; Wanielista, 1976) have
trient Tevels were usually reduced during higher
sted that a diluting of the normally high nutrient
bw flow, due to wastewater inflows, was due to the
bvels characteristic of nonpoint source runoff.

t same trend (Fig. 5).

beared to be most affected by discharge judging
ifferences between the flow-weighted averages and
ations of nitrogen and phosphorus. The flow-

L) and phosphorus {0.11 mg/L) concentrations were
he average annual concentrations. This reduction
discharge at $-59 which diluted the usually high
loud Canal (Fig. 6). During no or Tow flow

in the St. Cioud Canal are high due to

pm the St. Cloud wastewater treatment plant.
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Shingle Creek Phosphorus Concentrations

The average total phosphorus concentration, presented earlier for Shingle
Creek, was approximately 0.50 mg/L. The phosphorus levels measured during
this study were appreciably lower than the historic levels reported by others
(Table 5). While there were some minor differences in the frequencies of
collection, the more important factors (analytical methods, sampling station
locations) are comparable between studies. Figure 7 presents the monthly
rainfall totals for the South Florida Water Management District's Kissimmee
field station which is lacated in the same general vicinity as the U.S.
Geological Survey recorders at Campbell and Kissimmee. The historic average
and study period total rainfalls were seasonal with most of the rainfall
occurring during the summer months. For the period of this study, total
rainfall exceeded the average for the previous nine year period by more than
10 inches. Table 6 shows the annual discharges for Shingle Creek at
Kissimmee and Campbell between 1973 and 1982. Discharges at both the Campbell
site and the Kissimmee site during the study period were more than double the
previous nine year average annual discharge. Assuming the additional ten
inches of rainfall recorded at the Kissimmee field station were collected by
the Shingle Creek Basin and the runoff reached Shingle Creek, flows of the
magnitude shown during this study period (170,729 acre-feet) appear reasonable
and might partially explain the reduced phosphorus concentrations in Shingle
Creek. However, while previous studies have linked reduced phosphorus
concentrations to wet periods and increased flows in Shingle Creek, these same
studies have also linked a corresponding decrease in dissolved solids and
major ions (Federico and Brezonik, 1975; Wanielista, 1976). Therefore, the

decrease in phosphorus concentrations noted during this study should have been
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TABLE 5. COMPARATIVE HISTORICAL WATER QUALITY DATA FOR SHINGLE CREEK 1/

Total Total Ortho
Chloride Njitrogen Nitrate Ammonia  Phosphorus  Phosphorus
Source/Date mg/L mq/L mq/L mq/L mg/L mg/L
This Study 2/
1981-1982 25.8 1.74 0.182 0.043 0.5605 0.422
Federico and
Brezonik 2/
1974 25.4 4.48 0.394 0.324 1.771 1.493
ocecb/ ‘
1970-1973 - - 0.19 0.215 3.28 -
Phelps/
1969-1980 29.0 1.7 0.25 0.17 1.6 1.3
Milleson/
1974 22.8 1.21 0.087 0.04 1.555 1.207
USGS/ 27.0 1.34 0.105 0.043/ 1.500 1.48 3/
1979
USGS/
1980 43.0 1,92 0.560 0.063/ 1.805 1.787 3/
DER/
1974-1978 29.0 1.4 0.19 0.16 1.5 -

Y A1l stations selected pre located between U.S. Hwy 192 near Kissimmee and
Lake Tohopekaliga

2/ Combined average of twp stations

3/ Total values
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TABLE 6. D

Discharge* at Campbell
Year (02264495)
1973 97,740
1974 107,100
1975 74,360
1976 93,930
1977 61,440
1978 96,590
1979 102,200
1980 64,780
1981 64,920

Average Annual (1973-1981) 84,784

Study Period Total (1982)

* A11 discharges are in af
1973-1980 data from U.S
1981-1982 provisional U]

170,729

rre-feet

1G.S. published data
5GS unpublished data
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[SCHARGE COMPARISONS FOR SHINGLE CREEK

Discharge* at Kissimmee
(02263800)

49,640
68,130
43,730
59,530
32,510
52,550
57,210
34,580
34,630

48,057
97,394




accompanied by a decrease in chloride and in nitrogen if dilution due to
rainfall alone was responsible for the decreased phosphorus levels (Table 5).
Since the ambient chloride and nitrogen concentrations in Shingie Creek were
consistent with previous studies, some other contributing factor to the
lowered phosphorus levels seems indicated.

Major sources of nutrients to Shingle Creek are the Sand Lake Road and
McLeod Road wastewater treatment plants (Federico and Brezonik, 1975; U.S.
EPA, 1980). The average monthly phosphorus concentrations in the effluent
from these plants show a dramatic decrease since 1981 (Fig. 8) (FDER, 1982).
The volume of wastes treated during this period has steadily increased such
that each plant now processes about 100 cfs more than was processed during
years prior to 198l1. The improvements in the treatment of wastes at these two
plants has led to a significant reduction in the phosphorus Toads being
discharged to Shingle Creek (Davenport, 1983). This reduced phosphorus load
to Shingle Creek from the wastewater treatment plants should have contributed
to the reduction in ambient nutrient levels within the surface water of
Shingle Creek,.

Table 7 analyzes the reduction in the phosphorus loadings attributable to
the Sand Lake Road and McLeod Road wastewater treatment plants between the
historic loads presented by the U.S. EPA (1980) and those computed in this
study. This table shows that if the sewage treatment plants had not improved
their treatment process, a phosphorus concentration in Shingle Creek of 0.72
mg/L would have been expected (assumingno assimilation in Shingle Creek).
Comparing this concentration that wouldhave been expected inl982, assuming no
improved treatment, with the averagephosphorus concentration measured between
1975 and 1979, it appears that 1/3 of the reduction in total phosphorus
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TABLE 7. ANALYSIS OF THE REDUCTION IN PHOSPHORUS LOADINGS ATTRIBUTABLE
TO THE SAND LAKE AND MCLEOD ROAD WASTEWATER TREATMENT PLANTS

Flow-Weighted

Flow Mass Load Concentration

Date acre-feet  {gms X 108) (mg/L) Comments

1975-1979 1/ 88,242 135.3 1.28 Shingle Creek prior to
1980 WWTP improvements

1981-1982 170,729 95.1 0.45 Shingle Creek during
this study after 1980
WWTP jmprovements

1981-1982 170,729 151.9 2/ 0.72 Shingle Creek during

Percent reduction due to treatment plant improvements

1/ Dpata extracted from U.S. EPA, 1980.

2/ Phosphorus mass load computed by:

1981-1982 assuming
no WWTP improvements

33% 3/

Shingle Creek Mass Load (1982) - WWTP load (1982) - WWTP Load (1975-1979)
Wwhere: WWTP Load = Sand Lake Road and McLeod Road WWTP = 38.2 mg X 106

From Table
3/ Computed by ratio 0.72 - 0.45 = Percent reduction of WWIP's
1.28 - 0.45
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Water and Material Budget

Introduction

One of the major purposes of this study was to develop a comprehensive
water and materials budget for East Lake Tohopekaliga and Lake Tohopekaliga.
Since this is the first of a three year study, this water and materials budget
is preliminary and is subject to change as future information might indicate.
There are some areas of the budget which will improve with time and an
additional effort is currently underway to increase the overall accuracy of
the water and materials budget.

The methods used to calculate the materials budget are explained in
Appendix A. The terms utilized in this Section are defined in Appendix D.

Direct drainage and inflows from minor ungauged tributaries were not
computed for this study. These unaccounted for residual sources are combined
with the error in hydrologic measurement and have been accounted for in the

water budget's "other sinks" term.

East Lake Tohopekaliga

The annual water and materials budget (October through September) for
East Lake Tohopekaliga is shown in Table 8, with a monthly breakdown depicted
in Figure 9. The major source of water which combined represented 89% of the
total flow to East Lake Tohopekaliga was shared approximately equally between
Boggy Creek, rainfall, and $-62 . However, the flows through $-62 occurred
only during the period April through September 1982. The water releases at
$-62 and S-59 during this period were necessary to maintain the upstream lake
stages and remove the additional water from the basin which was the
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result of increased rainfal} activity during this period. Discharges through

the St. Cloud Canal at S-59 represented over 60% of the loss of water from
fFast Lake Tohopekaliga. ThI balance was due to evaporation.

Chloride was also considered in the materials budget as an accuracy
check. Since chloride is a|conservative ion, the chloride budget should
theoretically account for alll additions or losses over time, and the error
should be about the same as|the water budget error. This was the case, with
the chloride and water budget errors equaling -18% and -16%, respectively.
The negative term, however,| indicates that the budgets either underestimated
the inflow, or overestimated the outflow terms, or a combination of both.
Nevertheless, the overall apcuracy of the water budget and, therefore, the
materials budget appears gopd.

Boggy Creek contributed the most phosphorus (49%) while rainfall
contributed the most nitrogen (33%). Although $-62 supplied as much water as
did Boggy Creek and rainfalfl, its phosphorus contribution was much smaller.

Table 9 compares the nutrient mass loads and areal loading rates for East
Lake Tohopekaliga during thiis study and other previous studies. The data
generally indicates good agreement with the other studies for nitrogen. For
the phosphorus mass and areal loadings, the data collected during this study
show that the 1981-82 phosphorus load was less than 50% of the previous loads.
Based on one year's results, it is too early to tell if this is a developing
trend in improved water quality or an impact of the heavy rains in the second

half of the study year.

Lake Tohopekaliga

Table 10 presents the annual water and materials budget for Lake
Tohopekaliga. Figure 10 shows the seasonal effects of stage and discharge for
Lake Tohopekaliga.
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TABLE 9.

Source

This study, 1982

Federico and
Brezonik, 1975

EPA, 1977

EAST LAKE TOHOPEKALIGA

Total Nitrogen

COMPARATIVE MASS LOADINGS AND AREAL LOADING RATES FOR

Total Phosphorus

Mass Areal Mass Areal
(gms X 106)  (gms/m2/yr) {gms X 106)  (gms/mZ/yr)
271 5.8 16 0.3
291 5.9 68 1.4
364 7.5 36 0.7
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The error in the water by
approximately 50%.
effects of the unmeasured inf]

tributaries. The positive ery

dget for Lake Tohopekaliga was calculated to be

As noted earlier, this term represents the combined

ows and the error in measurements for the gauged

ror suggests the water budget is either

overestimating the inflows, underestimating the outflows, or a combination of

both. The large error in the|water budget for Lake Tohopekaliga cannot

currently be explained. Howeyer, two areas currently being investigated are:

(1) the comparatively greater|than "normal" inflows from Shingle Creek during

this study, and (2) possible ynderestimation of evaporation rates due to poor

evaporation pan data.

The major source of water to Lake Tohopekaliga was Shingle Creek (41%),

followed by rainfall (23%), and the St. Cloud Canal discharges at S-59 (22%).

Collectively, these made up almost 90% of the total inflow to Lake

Tohopekaliga.

the loss of water from Lake Tohopekaliga.

Discharges through S-61 in Southport represented

over 70% of

The rest was due to evaporation.

Most of the water releases to|Lake Tohopekaliga through $-59 and from the lake

at 5-61 occurred between Apri

necessary to conform to the regulation schedule.

the contribution of water frol
a result of increased nonpoini

Shingie Creek contributef
to Lake Tohopekaliga. Rainfa
nitrogen (20%). The West Kis
disproportionately great shar
Tohopekaliga as compared to t
contributed the second larges

only 1 percent of the water t

and September 1982. These releases were

Figure 10 also shows that
“other sources" increased during the summer as

E source runoff.

i the most phosphorus (65%) and nitrogen (41%)

11 contributed the second largest amount of

simmee City Ditch and Judges Dairy both supplied

ps of nitrogen and phosphorus to Lake

neir water inputs. The West Kissimmee City Ditch

L amount of phosphorus (10%), while discharging

h Lake Tohopekaliga. Although Judges Dairy was
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shown earlier to have elevated nutrient levels, the importance of this
tributary discharge to the whole lake was relatively minor since it
represented only 2 and 1 percent of the phosphorus and nitrogen total loads,
respectively. Local impacts to the lake due to Judges Dairy and the West
Kissimmee City Ditch, however, may be significant since the northern end of
the lake is partly isolated from the lake's main body.

Table 11 presents a comparison between the nutrient mass loadings and
available areal loading rates for Lake Tohopekaliga during this study and
other previous studies. While the nitrogen lcad (828 X 106 g) is
comparatively higher during the first year of this study than for most of the
previous studies, the areal loading rate (10.2 g/m2-yr) is similar. The
phosphorus load (146 X 106 g) and areal loading (1.8 g/m2-yr) was
significantly less than the computed results from previous studies. The lower
P loading is due to the reduced Toad from Shingle Creek as discussed earlier.

Table 12 compares the point and nonpoint source contributions to Lake
Tohopekaliga. The point source contribution to Lake Tohopekaliga is comprised
of all major wastewater treatment plants located within the lake's watershed.
The controllable nonpoint source load is defined as the loading contripution
from all other sources to Lake Tohopekaliga except the noncontrollable
nonpoint sources (rainfall, seepage, and water control structure $-59). The
controllable nonpoint sources were broken down into narth {(mostly urban) and
south (mostly agricultural) by an arbitrary 1ine from elements south of the
St. Cloud Canal to just south of the Shingle Creek Basin. The percent
contributions for each source was computed as the percentage of the total
inflow to Lake Tohopekaliga.

With respect to flow, the controilable nonpoint sources and the
noncontrollable nonpoint sources were essentially equal (46% and 47%,
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TABLE 11. COMPARATIVE MASS LOADINGS AND AREAL LOADING RATES
FOR LAKE| TOHOPEKALIGA

Total Nitrogen Total Phosphorus

Maks Areal Mass Areal
Source (gms X _106)  (gms/me/yr)  (gms X 106)  (gms/mZ/yr)
This study, 1982 828 10.2 146 1.8
Federico and
Brezonik, 1975 136 9.7 336 4.4
fPA-Atlanta, 1980 7168 9.1 194 2.3
EPA-Washington,
1981 153 9.9 L 194 2.5 1/
ECFRPC, 1978 192 10.4 L/ 270 3.5 1/
USEPA, 1977 1,631 21.4 372 4.9

Y Lake area from Phelps, G.G., 1982, to compute areal loads.
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TABLE 12.

Water
Source (acre-feet)
Point Source: 1/
Sand Lake Rd. WWTP 9,290
McLeod Rd. WWTP 13,876
Camelot Manor WWTP 344
St. Cloud WWTP 1,014
Kissimmee Interim WWTP 756
Kissimmee Main WWTP 1,751
Subtotal 27,031
Controllable NPS:
North (Shingle Creek 147,219
(Other 25,263
South 21,605
Subtotal 194,087
.3
Noncontrollable NPS: ™~
Subtotal 195,921
Total 417,039

1/ Frper, 1982.

Phosphorus

% (gms X 10%)

46 70.3

47 14.4
145.4

LAKE TOHOPEKALIGA WATER AND NUTRIENT INPUTS

Nitrogen

% (gms X 106) %

42 343.5 41

83.7
54,1 2/
52.8

48 130.6 23

10 294.4 36
828.5

2/ The Kissimmee West City Ditch controllable nonpoint source contribution
was considered insignificant and, therefore, assumed to be zero.

3/ Noncontroilable NPS includes rainfall, seepage, and $-59 discharge

from E. Lake Tohopekaliga.
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respectively) and when combingd were the major source of water to the Take.
Controllable nonpoint sources|and point sources accounted for approximately
equal contributions of phosphorus (48 and 42%, respectively) to the lakes.
Combined they accounted for 90% of the total phosphorus input. Point sources
contributed the most nitrogen| (41%), followed by the noncontrollable nonpoint
sources (36%).

Of the point sources, the three largest contributors of water and
nutrients were the Sand Lake Rd WWTP, the MclLeod Rd WWTP, and the Kissimmee
Main WHTP. The Kissimmee Maih WWTP, while contributing 1/5 as much total flow
as the Sand Lake Rd WWTP, contributed more phosphorus and slightly less than
1/2 of the nitrogen load contributed by Sand Land Rd WWTP to Lake
Tohopekaliga. This demonstrates that although the guantity of water delivered
to Lake Tohopekaliga from thel Kissimmee main plant is low, the nutrient levels
in the effluent water are high enough to cause this plant's loadings to become
a significant component of the total point source loading to Lake

Tohopekaliga.
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LAKE WATER QUALITY
Introduction

In order to establish lakewide water quality in both East Lake
Tohopekaliga and Lake Tohopekaliga, some voutine sampling sites were omitted
from mean computations to prevent areal bias. Specifically, as depicted on
the map of East Lake Tohopekaliga (Fig. 2), three of the sample sites {AQ2,
AD3, and A04) are equally distributed within the main body of the lake. The
remaining fourth station, AOl, is centered in Fells Cove. Although the
surface area of Fell's Cove represents only 6% of the total surface area of
East Lake Tohopekaliga, the water quality data at that site woulid represent a
full 25% of the general water quality if it was included in the arithmetic
mean. Since this would introduce an areal bias this station was deleted from
the computations, and only quality data at A02, AD3, and AO4 were used in the
calculation of East Lake Tohopekaliga grand means. Similarly, in Lake
Tohopekaliga there is a greater density of water quality sites within the
northern half of the lake, and although sites BOl and BO3 offer valuable
information, they were not used in the calculation of grand means.

General water quality for the period of study is shown in Table 13.
Individual values represent the average of 12 monthiy readings. Stations A01,

BOl, and BO3 are also included for comparative purposes.

Lakewide Characteristics

East Tohopekaliga

Generally, the water quality in the main body of East Lake Tohopekaliga
was relatively good. The pH levels were slightly acidic averaging 6.4, but
occasionally measured at levels as low as 5.4. This was due to low pH inf lows
and the very low alkalinity of East Lake Tohopekaliga. Specifically, the
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TABLE 13. COMPARISON OF &
AVERAGE WATER

Parameterll

pH (units)

Temp (°C)

0.0,

Cond. (micromhos/cm)
Secchi (meters)
Turb. (NTU)

Color (PTU)

TOC

7SS

NO»

NO3

NHa

Grganic N

Total N

OP0g

TPO4

Na

K

Ca

Mg

S04

C1

Si07

Alk. (mg/L as CaCO3)
Hard. (mg/L as CaCO3)
Chlor a (mg/m3)
Total Fe

1/ units in mg/L unless othd
2/ average of stations A-2 -

3/ average of stations B02 a

t Lake 2/

Tohppekaliqga AQ1

rwise indicated.
AD4

nd B04-B09.
46

6.5 5.8
22.7 22.7
8.3 8.1
145, 150.
2.07 0.72
1.7 4.6
31. 119.
7.4 12.3
3.8 5.3
0.004 0.005
0.004 0.015
0.02 0.02
0.69 1.02
0.72 1.05
0.004 0.004
0.020 0.028
13.27 12.20
1.95 1.44
2.73 4,95
3.23 3.00
15.4 20.3
22.2 20.8
c.8 1.6
8.00 6.00
19.0 24.7
5.3 6.0
0.14 0.46

Lake 3/
Tohgopekaliga

8.2
23.7
9.0

269,

0.55
7.6
78.
20.2
11.5
0.005
0.018
0.01
2.15
2.33
0.149
0.303
23.13
3.11
14.62
4.61
19.0
31.0
1.7
43.00
55.4
68.3
0.25

(AST LAKE TOHOPEKALIGA AND LAKE TOHOPEKALIGA
QUALITY (10/1/81 - 9/30/82)

01 &

7.5
23.3
7.9
268.
0.64
3.4
148.
21.7
3.3
0.015
0.095
0.03
1.70
1.83
0.447
0.549
21.54
3.51
18.37
4,48
18.5
26.7
3.1
44.5
64.3
29.5
0.26




alkalinity of East Lake Tohopekaliga averaged 8.00 mg/L as CaCO3, but
individual readings below the 1imits of detection (5.00 mg/L as CaC03) were
common.

Daytime dissolved oxygen levels were relatively high, averaging 8.3 mg/L,
with no observations below the Chapter 17-3 State Standard of 5.0 mg/L.

East Lake Tohopekaliga had low levels of chiorophyll a, an indicator of
algal biomass. Chlorophy11 a concentrations in East Lake Tohopekaliga rarely
exceeded 10.0 mg/m3, much lower than any of the other four lakes in this
study.

Specific conductance measured in East Lake Tohopekaliga was moderate (145
micromhos/cm). The major cation was sodium (13.27 mg/L) and the major anions
were chloride (22.2 mg/L) and sulfate {(15.4 mg/L).

Physical measurements included low color (31 Pt units), low turbidity
(1.7 NTU), and low total suspended solids (3.8 mg/L). The mean Secchi depth
of 2.07 meters was not representative since on several occasions the Secchi
disc was on the bottom of East Lake Tohopekaliga.

Total nitrogen concentrations measured in East Lake Tohopekaliga were
low, seldom exceeding 1.0 mg/L. The total nitrogen grand mean for the main
body of East Lake Tohopekaliga was 0.72 mg/L. Ninety-six percent of the total
nitrogen was in the organic form (0.69 mg/L). Levels of NOp, NO3, and NHa
were often below their detection Timits.

The average total phosphorus level in tast Lake Tohopekaliga was
moderately low (0.020 mg/L) with the orthophosphate fraction consistently
recorded below the Timits of analytical detection (0.004 mg/L) at all four

East Tohopekaliga stations.

47



Other parameters record
were total organic carbon (7]

mg/L).

In general, pH values
characterized by a grand mea
lake are acidic in nature,
buffer the inflows and resul

Like East Lake Tohopeka
Tohopekaliga were high, aver
the 5.0 mg/L State Standard.

measured at the surface duri

to the high photosynthetic &

ed for the main body of East Lake Tohopekaliga
.4 mg/L), Si02 (0.8 mg/L), and total iron (0.14

Lake Tohopekaliga

in Lake Tohopekaliga were on the alkaline side
n of 8.2. Although many of the inflows to this
he mean alkalinity is high enough (0.86 meg/L) to
t in an slightly alkaline aquatic environment.
liga, surface dissolved oxygen levels in Lake
aging 9.0 mg/L, with no observations falling below

These dissolved oxygen concentrations were all

ng daylight hours and are most probably attributed

ctivity as indicated by the high chlorophyll a

levels (grand mean - 68 mg/m3).

Specific conductance ds
Tohopekaliga than in East L3
conductance inflows. Averag
micromhos/cm for the period
Tohopekaliga grand mean. (g
substantially higher levels
apparent difference with a f
from East Lake Tochopekaliga
Additionally, Lake Tohopeka]

{3.11 mg/L), magnesium {4.6]

inseguently,

b

monstrated substantially higher Tevels in Lake

tke Tohopekaliga due largely to high specific

e specific conductance for the entire lake was 269

of study, 85% greater than the East Lake
ion concentrations displayed

in Lake Tohopekaliga. Calcium displayed the most

ive-fold increase in grand mean concentrations

(2.73 mg/L) to Lake Tohopekaliga (14.62 mg/L).

iga grand means for sodium (23.13 mg/L), potassium

mg/L), sulfates (19.0 mg/L), and chlorides (31.0

mg/L) also demonstrate elevated levels over respective East Lake Tohopekaliga

concentrations.
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Lake Tohopekaliga also exhibited higher levels of color (78 Pt units),
turbidity (7.6 NTU), chlorophyll a (68.3 mg/C/m3), and total suspended solids
(11.5 mg/L), resulting in a secchi grand mean of 0.55 meters which is a
quarter of that of East Lake Tohopekaliga.

As in East Lake Tohopekaliga, the concentration of inorganic nitrogen in
Lake Tohopekaliga was very low averaging 0,03 mg/L for the period of study.
Nitrate (0.018 mg/L) and nitrite (0.005 mg/L) did display levels greater than
detection, but the grand means remained low. Total nitrogen (2.33 mg/L),
however, was higher due to the moderate concentrations of organic nitrogen
{(2.31 mg/L) found in the lake. Average ortho and total phosphorus values in
lLake Tohopekaliga demonstrated substantial increases over East Lake
Tohopekaliga, by ortho and total phosphorus grand means of 0.149 mg/L and
0.303 mg/L, respectively. These values indicate an almost even split between
the organic and inorganic constituents of phosphorus on a whole lake basis.

Total iron and silicates were also monitored during this study, yielding

grand means of 0.25 mg/L and 1.7 mg/L, respectively, for Lake Tohopekaliga.
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General

Any analysis of seasona]
of seasonality into considerd
seasonal changes in the tempe
chemistry in response to hydy
obvious - some water chemisty
axygen are directly influence
photoperiod.
hydrological conditions, is
three-quarters of the total 3

to October 31. Associated w1

stage levels and quantities

abruptly in response to stor
regulation schedules. These
chemistry parameters and cau

East Lake Tohopekaliga:

Chlorophy11 a data indi
(Fig. 1lla). Conversely, dis
summer reflecting the lower
the increase in chlorophyll
summer months due to the sha
Tohopekaliga during June-Aug

chlorophyll a and color leve]

summer months.

Seasonal Analysis

trends within a data set must take two aspects
ition, (1) changes in water quality caused by
erature and photoperiod, and {2) shifts in water
rological conditions. The first situation is
'y indices such as productivity or dissoivad

>d by water temperature and the length of daily

The second sityation, shifts in water chemistry in response to

especially pronounced in south Florida where
innual rainfall falls during the wet seascn, May 1
th rainfall amounts are respective changes in

f tributary discharge. The changes may occur
ater events or more gradually in corder to meet

influences can substantially shift water

e apparent seasonal trends.

ated increased levels during the summer months

olved oxygen levels were generally lower in the

olubility of oxygen in warmer water. Paralleling
is an increase in color (Fig. l1b) during the

p increase in surface inflows to East Lake

st 1982 {see Part 3). Together, these higher

s produce a decreased secchi depth during the

Although total phosphorys and total nitrogen levels do display

fluctuations during the perig

d of study, there is no clear seasonal pattern
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evident in East Lake Tohopekaliga. Additionally, since both inorganic
nitrogen and ortho phosphorus rarely exceed minimum detection limits, no
trends could be discerned. Figure llc also depicts the seasonal graphs for
specific conductivity which, aside from a slight increase, 1in August remained
retatively constant during the year.

Lake Tohopekaliga

Many of the seasonal observations made for East Lake Tohopekaliga were
less evident in Lake Tohopekaliga. Average chlorophyll a levels are higher
but show no discernable seasonal trends during the study year either at
individual stations or whole lake averages. For example, the months with
the three highest mean chiorophyll a levels are June, October, and February.
Dissolved oxygen levels do demonstrate slightly elevated levels during the
winter months (Fig. 12a).

Color, turbidity, and secchi disc readings display no clear seasonal
trend, with high levels occurring randomly during the year (Fig. 12b).

Like East Lake Tohopekaliga, the components of inorganic nitrogen
(nitrites, nitrates, and ammonia) are too low to note any evidence of
seasonality. Organic and total nitrogen concentrations did vary substantially
in Lake Tohopekaliga during the study year; however, no distinct patterns were
evident (Fig. 12c). Several parameters such as chloride, total nitrogen,
total phosphorus, and specific conductance demonstrate a decline during the
end of this study period. Whether this is a seasonal phenomenon due to
greatly increased flow or an indication of a long term improvement in overall

lake guality is speculative at this point.

Areal Variations in Water Quality
One of the tools which can be used to graphically assess areal
distribution of water quality within a body of water is SYMAP(R) _ a computer
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mapping program developed by

Spatial Analysis. The SYMAP

concentration gradients or iy

and differences in parameter

by exact values.

search radius such that an ay

interpolation. In turn, the
point values received by the
the sguare of their distance
construct topographical grou
maps. Aside from actual par

factors which can affect the

For each py

the Harvard Laboratory for Computer Graphics and
package converts individual sample site data into
opleths to spatially illustrate both similarities
values. The actual sample sites are designated
int location (symbol), the program employs a
grage of seven data points are included in the
interpolation is distance weighted with the data
print location being inversely proportional to

apart. The technigue is similar to that used to

Id elevation, isothermal, and population density

meter values, there are a number of manipulative

resultant map; the quantity and location of

sample sites, the system's physical boundaries and barriers, the selection of

contour intervals, etc.

East Lake Tohopekaliga

Three of the four water

Tohopekaliga (AC2, AQ3, and 1

indices. The fourth station
impacted from inflows from J
being influenced by local se]
nutrient enriched, high in cq
East Lake Tohopekaliga.
Figs. 13 through 17 pro
mean water chemistry estimat

trend - general homogeneity

Fells Cove.

quality sampling sites located in East Lake

\04) are relatively uniform for most water quality
(AO1), located in the center of Fells Cove, is
im Branch and Lakes Ajay and Hart, as well as
ptic tanks. These inflows tend to be relatively

blor and low in pH compared to the main body of

vide some of the maps of the areal distribution of

bs for the study period. A1l maps show the same

bf the main lake with slightly elevated levels in
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The water guality withi
with respect to nitrite (0.0D
(0.004 mg/L), dissolved oxy
micromhos/cm), chloride (22.
nitrogen (1.05 mg/L), nitrat
however, are significantly el
analyses of variance. Other
(119 Pt Units) also are signj
resulting in decreased secchfi
pH (5.79) and alkalinity (0.]
lake.

Lake Tohopekaliga

The surface inflows to

lake. Approximately 90% of

nitrogen from surface sourceg

station BO3. This lack of a
with a southerly flow in the
sometimes dramatic areal dist
Since there are no major sur
of station B03, the expected
from north to south as high §
into the remaining 75% of th
concentrations from north to
average total phosphorus cong
mg/L at BOl to 0.287 mg/L at
reversed for total nitrogen,

(1.90 mg/L at BO1 to 3.0l mg/

? mg/L), and most of the major ions.

the water, 82% of the phosphorus,

n Fells Cove is similar to the rest of the lake

5 mg/L), ammonia (0.02 mg/L}, orthophosphorus

gen (8.1 mg/L), specific conductance (145

Totail

e (0.015 mg/L), and phosphorus (0.028 mg/L),

evated above the rest of the lake based on
parameters such as turbidity (4.6 NTU) and color
ficantly higher than the rest of the lake,

disc readings (0.72 meters). Additionally, both

2 meq/L) are lower than in the main body of the

.ake Toho are unequally distributed around the

and 54% of the
enter in the northern 15% of the lake above
uniform areal distribution of inflows, coupled
lake, establishes conditions for distinct and

ributions of iniake water quality parameters.

Face inputs of total nitrogen and phosphorus south

areal pattern would be for a decreasing trend
nput loads from the north are flushed and diluted
e lake. This areal pattern of decreasing

south was measured for total phosphorus. The

rentrations decreased substantially from 0.651

BO9 (Fig. 18). However, the expected trend was
which increased the more southerly the direction
L at BO8) (Fig. 19). Since only 21% of the
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surface inputs of total nitrogen enters the lake south of BO3 (with a fiow-
weighted concentration of 1.22 mg/L), this approximately 1 mg/L (60%) increase
cannot be attributed to surface inflows. Therefore, internal loadings are
indicated as playing a major role in influencing the total nitrogen
concentration in the lake. Since total phosphorus concentration decreased in
a southerly direction, the internal lcading mechanism appears to influence
only the total nitrogen concentrations. Atmospheric nitrogen fixation is one
mechanism which would increase total nitrogen concentrations without
increasing total phosphorus levels. It is highly probable that large
quantities of atmospheric nitrogen are being fixed and incorporated into the
lake biomass. In order for such large quantities of nitrogen to be fixed,
there must be a large algal population. The chlorophyll a measurements
indicate that there is probably sufficient algal biomass present to account
for large fixation rates, with a lakewide chlorophyll a annual average of 68
mg/m3 and discrete chlorophyll a concentrations routinely measure above 100
mg/m3 in the southern half of the lake. In addition, phytoplankton
identification has indicated that nitrogen fixing blue-greens are a dominant
algae in the lake. (A more detailed discussion of phytoplankton
jdentification is presented in Part 3, Section 6.) Average chiorophyll g
concentrations also parallel the increases in total nitrogen from north (27.9
mg/m3 at BOl) to south (109.6 mg/m3 at BO8) (Fig. 20}. This trend is
supported by a strong lakewide statistical correlation between total nitrogen
and chlorophyll a (r = 0.82).

The rapid increase in chlorophyll a from north to south resulted in a
rapid assimilation of inorganic nitrogen and phosphorus. Inorganic nitrogen
decreased from an average of 0.16 mg/L at BOl to 0.01 mg/L at BO9 (Fig. 21).
In addition, many of the inorganic nitrogen values measured south of station
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Areal Distribution of
within Lake Tohopekaliga

CHLOROPHYLL A

Fig. 20.
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B05 were below detection 1im{
a rapid decrease from north
(Fig. 22). However, there wd
the south end of the lake.

The other two water chen
variations are color and turhb
northern end of Lake Tohopeka
reflecting the high color ing
units). These levels drop ra
gradients in the north end off
relatfonship between color an
chlorophyll a levels may be 1
by high color. The north end
color/low chlorophyll a. In

The trend for turbidity

ts. Inorganic (ortho) phosphorus also displayed
o south (0.546 mg/L at BOl to 0.087 mg/L at B09)

s still surplus inorganic phosphorus present in

istry indices which demonstrate definite areal

idity (Figs. 23 and 24). Color levels in the
liga are relatively high, 155 Pt units at BO1,

ut of such inflows as Shingle Creek (Avg. 226 Pt

pidly as evidenced by the narrow concentration
Lake Tohopekaliga. There seems to be a direct

d chlorophyll a. It is well known that

imited by the reduction in available light caused
of Lake Tohopekaliga is characterized by high

the south end the relationship is reversed.

is similar to chlorophyll a. The northern end is

characterized by Tow level tu

southward to a maximum site mean of 13.2 NTU at B0S8.

related to the increased quan
which would add to measuremen
It is obvious from the p

differences between the north

only are parametric means sub

between parameters shift from

shifts for the north end (BO1
particular interest are the r
chlorophyil a. The north end

chlorophyll a and total nitro

bidity (3.5 NTU at BO1) which increases

This is most probably
ities of algae in the south end of the lake
ts of turbidity.

revious discussion that there are some strong
and the south ends of Lake Tohopekaliga. Not
stantially different but also relationships
north to south. Table 14 presents some of these
-B03)} versus the south end (B05-B09). Of
elationship between nitrogen, phosphorus, and
was characterized by comparatively lower

jen and higher inorganic nitrogen, ortho and
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total phosphorus. From the north to the south the total nitrogen to total
phosphorus ratios (TN/TP) had increased substantially due to these shifts.
Additionally, the inorganic constituent of both nutrients had been reduced
substantially in direct relation to the increase in biomass as evidenced by

the chlorophyll a values.

Primary Productivity

Any discussion of productivity within an aquatic system must be centered
around the equation: net productivity = gross productivity - respiration.
That is, that net primary productivity is the rate of photosynthetic synthesis
of organic matter in excess of its respiratory utilization during the period
of measurement. In actuality this equation will rarely balance due to
unavoidable analytical error.

Table 15 presents the estimates of primary productivity done at two
stations {BO2 and B08) in Lake Tohopekaliga on the 1llth of August 1982. As
discussed in the section on Spatial Variation, these sites differ in most
water chemistry indices.

At station BO2 chlorophyll a levels are lower, respiration accounts for
only 3% of the gross productivity, and gross productivity measured 2866 mg
C/m3/day. Primary productivity measurements done on the same day at station
BO9, which is characterized by high chlorophyll a Tlevels, resulted in a gross
productivity of 7902 mg C/m3/day with 12% of that attributed to respiration.

In general, these results are high to very high. Similar analysis done
by this agency on Lake Okeechobee resulted in few observations over 1500 mg

¢/m3/day.
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TABLE 15. RESULTS OF PRODUCTIVITY EXPERIMENT AT
STATIONS B02 AND BO9 IN LAKE TOHOPEKALIGA

Productivity (mg C/m3/day)

Chl a
Station Depth Date (mg/m3) Gross Resp. Net
BO2 (1) 0.22M 8/11/82 24.9 2866 76 2803
BO9 (2) 0.2Z2M 8/11/82 103.8 7902 948 7112

Conditions:

(1) High |Color
Low d1gal turbidity
Secchi .6 meters
Init{al time 0940
Final time 1610

(2) Clear to partly cloudy
Low ¢olor
High|algal turbidity
Secchi .5 meters
Initfal time 1040
Final time 1653
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Limiting Growth Factors

The ratio of nitrogen to phosphorus, either as jnorganic or the total
constituents, is often used as an indicator of the 1imiting growth factor of a
lacustrine system (Table 16). Recent limnological investigations have
indicated that limits in the production of aquatic biomass are related to the
nitrogen to phosphorus ratios. Specifically, a ratio less than 10 indicates a
system whose biota is 1imited by the amount of available nitrogen. A ratio
greater than 17 denotes phosphorus limitation. Those lakes which are
characterized by nitrogen to phosphorus ratios greater than 10 but less than
17 may be either nitrogen or phosphorus 1imited (Sakamoto, 1966; Forsberg and
Ryding, 1980; E.P.A. National Eutrophication Survey, 1978). The ratio of
inorganic nitrogen to inorganic phosphorus for East Lake Tohopekaliga is below
6 at all stations which would indicate nitrogen limitation. However, both
inorganic nitrogen and inorganic phosphorus levels in East Lake Tohopekaliga
were rarely above the limit of detection, thus making ratio calculations
difficult to ascertain. For this reason the total nitrogen to tatal
phosphorus ratios were used to establish nutrient limitation. Ratios ranged
from 32.5 to 38.5 within East Lake Tohopekalig, a well within the range of a
phosphorus limited lake system. Canfield (1981) and Dye, et al (1975), found
that phosphorus is the element most likely 1imiting algal biomass in Florida
lakes.

This is not true of Lake Tohopekaliga, although ortho and total
phosphorus concentrations are reduced in the south end of the lake, it is
inorganic nitrogen which decreases below detection limits. At all stationms
within Lake Tohopekaliga the ratio of total nitrogen to total phosphorus is
below the 15:1 ratio. The EPA in a recent (12/24/81) report of Lake
Tohopekaliga water quality jdentified Anabena as the major algal genus present
during a bloom. Since this blue-green has been previously identified as a
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TABLE 16. NITROGEN & PHOSPHORUS RATIOS

TN/ IN/
TP P

Fast Lake 1/ AOL 37.5 4.29
Tohopekaliga AQ2 38.5 5.71
AO3 32.5 1.43

A04 36.5 1.43

Lake Tohopekaliga BO1 2.92 0.29
BO2 3.39 0.28

BO3 3.95 0.32

BO4 8.26 0.48

BOS 7.52 0.13

BO6 8.68 0.17

BO7 9.17 0.11

BO8 10.20 0.12

809 10.07 0.11

y Many of the observatipns for inorganic phosphorus and inorganic
nitrogen in East Lake Tohopekaliga are below detection thus ratio is
estimated.
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photosynthetic organism capable of nitrogen fixation, its growth would
doubtfully be limited by any paucity of available nitrogen. The report goes
on to conclude that, therefore, phosphorus must be the 1imiting nutrient to
the biomass of Lake Tohopekaliga. This conclusion seems unlikely since the
Jjevels of inorganic phosphorus throughout the lake are too high for phasphorus
to be 1imiting. Although results of our phycology analysis do indicate that
Anabena is a prevalent algal species, what the EPA report fails to consider is
that the rate at which Anabena and other organisms like it can fix atmospheric
nitrogen is limited and, therefore, Lake Tohopekaliga would still be

considered "nitrogen limited".
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Trophic Staj
One of the primary object
state and eutrophication poten
project is to set maximum tota
basin, or sub-basin that wil
achieve this goal, nutrient in
if they can accurately predict
loadings and other hydrologica
used to determine what level ¢
trophic state.
To increase the confideng
will be collected because such
water quality, and basin hydro
reason, final assessments and
study is completed. This chap
trophic states of Lake Tohopek
applicability of certain nutrj
guidance for future work.
This analysis is similar
for Lake Okeechobee (SFWMD Teq
referred to that report for arn
nutrient input-output models |
mass balance models). Federid
developed from Florida lake dd
trophic state and in-lake nutr
found that the best model for

modified to fit Florida lakes.

te Analysis and Model Evaluation

ives of this study is to assess the troph:.
tial of each lake. The ultimate goal of this
1 nutrient loading allocations for each lake,
prevent eutrophication of the lakes. To
put-output models will be evaluated to determine
the lake's trophic state based on nutrient
1 characteristics. Then, these models can be
f nutrient loading will produce the desired
e of this analysis, more than one year of data
factors as rainfall, nutrient runoff, take
logy will vary from year to year. For this
recommendations will not be made until this
ter provides a preliminary assessment of the
aliga and East Lake Tohopekaliga and tests the

ent input-output models in order to provide

to the one presented by Federico et al (1981)
hnical Publication #81-2). The reader is
explanation of the theory and development of
also referred to as nutrient loading models or
o et al tested several models, including some
ta, for their ability to correctly predict the
ient concentrations of Lake Okeechobee. They
this lake was the Vollenweider (1976) equation
This model was then used as a basis for
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developing a nutrient control strategy for the lake basin. Before testing
this and other models on the Kissimmeee lakes, the trophic state of each lake

will be determined based on various indicators and a trophic state index.

Trophic State

According to other studies, East Lake Tohopekaliga may be characterized
as mesotrophic and Lake Tohopekaliga may be described as eutrophic (Baker et
al 1981; Canfield 1981; ECFRPC 1378; Federico and Brezonik 1975; U.S. EPA
1977a, 1977b, 1980).

Trophic state may be judged by comparing observed levels of certain water
quality parameters with their critical vaiues (above or below which a
eutrophic condition could be expected). These trophic state indicators,
primarily total and ortho phosphorus, total and inorganic nitrogen, Secchi
disk transparency, and chlorophyll a, were used by Federico et al {1981) in
evaluating Lake Okeechobee. From among the several sources 1isted by Federico
et al, Kratzer (1979) is the only reference that presents critical values
developed from a Florida data base. Consequently, these values are probably
the most appropriate for comparison with the water quality of the Kissimmee
lakes. According to Kratzer, a eutrophic condition can be expected if
chlorophyll a, total phosphorus, and total nitrogen are above 10.0 mg/m3,
0.040 mg/L, and 0.90 mg/L, respectively. Based on these criteria, Lake
Tohopekaliga would be classified as eutrophic, since the average values of
these parameters are each above their critical values. East Lake
Tohopekaliga, on the other hand, cannot be classified as eutrophic based on
these parameters (see Table 13 for average lake concentrations).

Trophic conditions can be quantified by means of a trophic state index
(TSI) which may be based on one or several variables. The advantages of a
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trophic state index are that

historical changes in trophic
assessment of the impact of c

Trophic state indices b4
phosphorus, and total nitroge
judged to be the most immport

state and TSI associated with

are shown in Table 17.

choice for representing troph
actual amount of algal biomas
classify lakes on the basis g

the chlorophy1l TSI and usual

Further, only the Tower

the lesser of TSI (TP) and TS

the lake,

Based on the chlorophyil

East Lake Tohopekaliga.

a borderline hypereutrophic (¢

Secchi depth and total nitrog

eutrophic to hypereutrophic ¢

is much higher than the othen

Timited and contains more phg

Carls

lakes can be ranked against each other and that
state can be guantified, thereby allowing an
ultural perturbations.

sed on Secchi depth, chlorophyll a, total

n are used in this report. These parameters are
ant in determining trophic state. The trophic
various levels of these water gquality parameters
on (1983) states that chlorophyll is the index of
ic state, since this parameter best reflects the
s in the water, and the index is intended to
f algal biomass. The other indices supplement
ly will coincide with it.

of the two nutrient indices should be used since

I (TN} should represent the Timiting nutrient in

TSI, Lake Tohopekaliga is more eutrophic than

Lake Tohopekaliga's TSI (CHA) is 72.0 which indicates

ondition (Table 18). Trophic state indices for
en are slightly less but still indicate a

ondition. Note that the TSI (TP value of 86.6)
indices, suggesting that this lake is nitrogen

ysphorus than the phytoplankton can utilize. This

is confirmed by the low TN:TR ratio and high orthophosphate levels that were

discussed earlier. The TSI

suggests that this lake is mesotrophic.

with this conclusion,

CHA)} of East Lake Tohopekaliga is 46.9 which

The other TSI's are similar and agree
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TABLE 18] TROPHIC STATE INDEX RESULTS

East Lake Lake

Tohopekaliga Tohopekaliga
TSI (sp) L/ 49.5 68.6
TSI (CHA) 2/ 46.9 72.0
TSI (TP) 3/ | 47.4 86.6
TSI (TN) &/ 49.7 66.6

1/ 7SI (SD) = 10 (6-1n (8D)/1n 2) (Carlson 1977)

o
e

TSI (CHA) = 10 (6-(2.04-0.68 1n (CHA))/1n 2} {Carlson 1977)

jw
.

TSI (TP) = 10 (6-1n(48/TP}/1n 2) (Carlson 1977)

[} -3
~—

TSI (TN} - 10 {6-1n (1.47/TN}/In 2) (Kratzer and Brezonik 1981)
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Aplicabiiity of Phosphorus Input-ocutput Models
The modified Vollenweider (1976) models for phosphorus and nitrogen are

expressed as follows:

TP = 0.682 (Lp/(qs (1 + V1y) ) ) 0.934
™=1.29 (Ly/(as (1 + /1y ) ) ) 28
where,

TP and TN are the predicted in-lake concentrations of total
phosphorus and total nitrogen (mg/L})

Lp and Ly are the annual loading rates of total P and total N per
unit of lake surface area (g/m2-yr)

qg is the hydraulic loading rate (m/yr)

T, 15 the water residence time (years)

Substituting the East Lake Tohopekaliga values for Lp, dg, and Ty, the
predicted TP concentration is 0.047 mg/L. This value is over twice as large
as the average measured concentration of 0.020 mg/L. For Lake Tohopekaliga,
the predicted TP value is 0.163 mg/L, 46% lower than the measured
concentration of 0.303 mg/L. Thus, although the modified Vollenweider (1976)
model is a good predictor of Lake Okeechobee phosphorus concentrations, it
does not appear to work as well for these lakes for this year of study.
Simple equations of this type cannot be expected to always perform weil for
each lake to which they are applied because each lake has unique
characteristics that are unaccounted for by the model. However, there are
several jdentifiable reasons to expect significant errors in the Vollenweider
model predictions.

First and most important is the inaccuracy of the Lake Tohopekaliga water
budget. Since the model runs on hydrological data, an accurate water budget
is extremely important for Tlake modeling. As shown earlier, the water budget
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error was 49.6%, which means
volume of the lake was unacco

the application of the model

Violations of some assum

contribute to model error.

(1} The lake acts as a
well-mixed, both ve
(2) Lake inputs are con
(3)
inputs.
{4) The lake is in a st

are not changing ov
Lake Tohopekaliga violaf]

column is well-mixed, there 4

from north to south.
much greater during the latte
concentrations are probably 1
resuspension and diffusion of
external inputs. Finally, f
with respect to phosphorus cg
concentrations in the south ¢
are lower in 1981-83. In faq
that phosphorus concentratio
October 1981-September 1982

illustrate this trend). Thij
entire lake. A conclusion of

Creek TP concentrations or i

T

Lake in

I

that a volume of water equal to one-half the
inted for in the budget. This error alone nakes
to this lake quite tenuous.

ptions used in developing this model may also
hese assumptions are:

homogeneous, constantly stirred reactor. It is
rtically and horitzontally.

stant throughout the year.

Lake phosphorus concentrations are only influenced by external

eady state, that is, phosphorus concentrations
er time.

es each of these assumptions. Although the water
re significant areal variations in water quality
puts were not constant in 1981-82; inflow was

r half of the year. Lake phosphorus

nfluenced by internal loading processes such as
phosphorus from the sediment in addition to

he lake does not appear to be in steady state
Incentrations. As Table 19 shows, average TP
ind of the lake increased from 1974 to 1979, but
rt, data collected over the last two years show
s are decreasing. (Data collected outside the
eriod of study is included in Table 19 to better
s decreasing trend is evident as is shown over the
h whether this decline is due to reduced Shingle

5 just a cyclical phenomenon must await several
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TABLE 19. HISTORICAL TRENDS IN SOUTHERN LAKE TOHOPEKALIGA 1/
PHOSPHORUS , NITROGEN, AND CHLOROPHYLL CONCENTRATIONS =

Chlorophyll

Year TP (mg/L) TN (mg/L) (mg/m3)
1972 - - 33.6
1974 0.160 1.75 -
1975 0.196 1.86 -
1976 0.384 2.42 88.6
1977 0.309 2.39 75.0
1978 0.312 1.94 77.9
1979 0.443 2.45 126
8/81-7/82 0.336 3.32 134.2
9/81-8/82 0.309 3.32 124.4
10/81-9/82 0.303 3.10 109.6
11/81-10/82 0.287 2.82 101.0
12/81-11/82 0.277 2,66 96.7
1/82-12/82 0.270 2.53 99.0
2/82-1/83 0.266 2.48 99.0
3/82-2/83 0.269 2.25 81.4
4/82-3/83 0.279 2.18 78.0

L/ Years 1972 - 1979 are from U.S. EPA (1980). Results
from 1981 - 1983 are from this study and are from station BO9.
Both sampling locations are approximately 1.5 miles
northwest of the lake outlet, S-61.
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more years of data collection

trophic state of Lake Tohopeka
that trophic state improvement

reductions, thus causing the n

phosphorus concentrations.

To further examine the pe

model, it was tested using ear

Although the accuracy of the
significantly exceed the repo
of 2.48 g/m2-yr, a hydraulic

time of 0.46 years, the predi

percent lower than the 1974-79

mg/L).
period prior to 1981-82,

Thus, the model perfo

The applicability of oth

Tohopekaliga and Lake Tohopek

but the data collected so far suggest that the

liga is improving. If so, it could be expected
would lag behind the rate of phosphorus Toacing

utrient loading model to underpredict lake

rformance of the modified Vollenweider (197€)
lier Lake Tohopekaliga data (U.S. EPA 13980).

gPA water budget is unknown, the reported inflows

fted outflows. Using a phosphorus loading rate

loading rate of 4.21 m/yr and a water residence

dted TP value is 0.257 mg/L which is only 17
) average concentration in the south end (0.301

¥ms better but also underestimates TP for the

er nutrient loading models to East Lake

31iga was also tested (Table 20). Like the

modified Vollenweider (1976) model, the modified Vollenweider {1975) and

modified Dillon and Rigler (1
data base. The other models
temperate zone lakes (Canfiel

Based on one year of dat|
best for each lake. A1l mode
underestimated TP in Lake Toh
prediction is not peculiar tg

best predictions were provide

§75) models were developed from a Florida lake
were developed from a large number of natural,
d and Bachmann, 1981).

a, it is impossible to conclude which model is
1s overestimated TP in the East Lake and
opekaliga which demonstrates that the error in
the modified Vollenweider (1976) model. The

d by the modified Dillon and Rigler (1975) model.
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TABLE 20. COMPARISON OF PHOSPHORUS INPUT-OQUTPUT MODELS

TP (mg/L)
East Lake Lake
Tohopekaliga Tohopekaliga

Measured Concentrations 0.020 0.303
Predicted Concentrations

Modified Vollenweider (1976); v
(Federico et al 1981)

TP = 0.682 (Lp/(qg (1 + v%,) ) ) 0-934 0.047 0.163

Modified Vollenweider (1975); Y
(Kratzer 1979)

TP = 0.843 (Lp/{10 + gg) ) 0-793 0.047 0.157

Modified Dillon and Rigler (1975); &/
(Kratzer 1979)

TP = 0.748 (Lp(l - Rexp)/qs) 0-862 0.031 0.233

Where Rexp = (Pin - Poyt)/Pin

Canfield and Bachmann (1981) 2/

TP = Lp/(2(0.162 (Lp/z) 0-4%8 + (1/14,) ) ) 0.053 0.165
TP = 0.8 Lp/(2(0.0942 (Lp/z) 0-422
+ (/1) ) ) 0.062 0.205

Modified Larsen and Mercier (1976); 2/
(Canfield and Bachmann 1981)

TP = (Lp(1-R) )/dg 0.049 0.189
Where R = 1/(1 + 0.747 (1/71,) 0-507)

1/ 1P in mg/L; Lp in g/mé-yr
2/ TP in mg/m3; Lp in mg/ml-yr
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Applicability

Since East Lake Tohopekall

model should be used in managj
nitrogen-1imited, so it might
model to compute maximum allow
shown in the previous chapter
probably fixed from the atmosp
therefore, it is probably impp
nitrogen inputs alone. Insteg
the point where the limiting n
advantage may shift away from
desirable algal forms (Smith,
concentrations as well as alga
phosphorus loadings. However
nitrogen loadings should be cg
(Table 21) have been applied ¢
nitrogen model was chosen as f
al 1981). Table 21 shows thaf
the average lake nitrogen cong
compared to the measured value
to correctly predicting the agq
indicated before, none of thed
importance of internal loading
problems discussed in the eval

particularly the inaccuracy off

of Nitrogen Input-output Models
iga is phosphorus-limited, a phosphorus oding
ng this lake. In contrast, Lake Tohopekal. i is

be appropriate to use a nitrogen input-output
able nitrogen loading rates. However, it was
that a major portion of lake nitrogen is
here and/or cycled up from the sediments;
ssible to control algal growth by reducing
d, if external phosphorus inputs are reduced to
utrient becomes phosphorus, then the competitive
nitrogen-fixing blue-green algae to more
1982). Thus, both phosphorus and nitrogen
1 biomass might be decreased by reducing
it has been arqued that both phosphorus and
ntrolled, so three nitrogen loading models
o the lake. The modified Vollenweider (1976)
he best model for Lake Qkeechobee (Federico et
as with phosphorus, this model underestimated
entration. The predicted value is 1.54 mg/L
of 2.33 mg/L. The other two models came closer

tual nitrogen concentration; however, as

e models are realistic because they ignore the

processes. They also suffer from the same

uation of phosphorus loading models,

the Lake Tohopekaliga water budget.
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TABLE 21. COMPARISON OF NITROGEN INPUT-OUTPUT MODELS

Lake Tohopekaliga

TN (mg/L)

Measured Concentration 2.33
Predicted Concentrations

Modified Vollenweider (1976); (Federico et al (1981)

TN = 1.29 {Ly/gs (1 + /1y) ) ) 0-8%8 1.54

Modified Vollenweider (1975); (Kratzer 1979)

TN = 2.85 (Ly/(10 + qg) ) 0-216 2.63

Modified Dillon and Rigler (1975); (Kratzer 1979)

TN = 0.899 (Ln(1l - Rexp)/gs) 0-976 1.94

where Rexn = (Nin - Nout)/Nin
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Several projects are no
municipal wastewater and to
Tohcpekaliga basin. These p
to the lake, resulting in an
phytoplankton biomass. Sinc
biomass, it would be desirab
a result of a given reductio
in two steps. The first ste
from the expected nutrient 1
Then, assuming that algal bi
chlorophyll a concentrations
values through the use of a
phosphorus and/or nitrogen.

Several researchers (Sa
Bachmann 1976; Carlson 1977)
are highly correlated. Beca
lakes also exhibit a strong
nitrogen (Baker et al 1981;
regression equations are for
of lakes. Some models devel
Most models are Tinear regre
variable. Because Lake Toho
chlorophyll-nitrogen regress
(1983) and Smith (1982) indi
nitrogen-limited (i.e. have

usually Vimited by phosphory

Chlorophyl1 Models

W underway to improve the effliuent gquaiit: of
control nonpoint-scurce runoff in the lLake

rojects are designed to reduce nutrient loadings
improved trophic state and decreased

p the ultimate management goal is to reduce algal
le to determine how much hiomass would decrease as
n in nutrient loading. This can be accemplished

p is to predict in-lake nutrient concentrations
pading rates using a suitable input-ouput model.
pmass is 1imited by phosphorus or nitrogen, future

can be estimated from the predicted nutrient

regression equation relating chiorophyll to

kamoto 1966; Dillon and Rigler 1974; Jones and
have found that chlorophyll and total phosphorus
Lse many Florida lakes are nitrogen-limited, these
relationship between chlorophyll and total
Canfield 1983). Usually, chlorophyll-nutrient
mulated using average values from a large number
oped from Florida lake data are shown in Table 22,
ssions using either TP or TN as the independent

a

pekaliga is nitrogen-limited, the use of

ion would be more appropriate. However, Canfield

cate that highly eutrophic lakes tend to be
A low TN:TP ratio) while less productive lakes are
s. Differences in the TN:TP ratio account for
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TABLE 22. APPLICABILITY OF CHLOROPHYLL MODELS TO THE SOUTH END
OF LAKE TOHOPEKALIGA

1981-2/
1976 L/ 1977 1/ 1978 1/ 1979 1/ 1982
Measured TP concentration (mg/m3) 384 309 312 443 290
Measured TN concentration (mg/m3) 2422 2387 1943 2453 3000

Measured_Chlorophyll a concentration
{mg/m3) 88.6 75.0 77.9 126 107

Predicted Chlorophyll Concentrations

This study 3/

Chl a = 58.4 (TN) - 161.2 (TP) 6/
5.82 (TN/TP) + 30.09 73.0 74.8 57.1 69.8 -2

Baker et al (1981) 3/

Tog (Chi a) = 0.79 Tog (TP) - 0.41 42.8 36.1 36.3 47.9 34.3

log (Ch1 a) = 1.46 log (TN) + 1.03 39.0 38.2 28.3 39.7 53.3

smith (1982) ¥/

log (Chl a) = 0.374 lcg (TP)
+ 0.935 log (TN} - 2.488 43.9 40.0 33.1 46.9 48.3

Canfield (1983) %/

log (Ch1 a) = 0.269 log (TP)
+ 1.06 log (TN) - 2.49 62.0 57.6 46.4 65.3 72.1

log (Chi a) = 0.774 log (TP) - 0.15 70.8 59.9 60.3 79.1 57.0
log (Ch1 a) = 1.38 Tog (TN) - 2.99 47.9 46.9 35.3 48.7 64.3

1/ Measured concentrations for 1976-79 from south end of lake (U.S. EPA 1980}
2/ Measured concentrations for 1981-82 from this study (station B09)

3/ TP and Chl a in mg/m3, TN in mg/L

4/ ANl units in mg/m3

5/ TP and TN in mg/L, Chl a in mg/m3

6/ 1981-82 predicted value not shown since 1981-82 data was used in
calibrating this model.
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much of the scatter observed
influence of the TN:TP ratio,
TN and TP in their equations.
model error than eguations ba
nutrient loading reductions W
Tohopekaliga, a multiple regr
suitable for predicting futun

In examining the data fr
highly correlated with TP and
relationships, multiple regrg
Tohopekaliga and Lake Tohopek
Table 22,

Using average TN and TP
the ability of these models {
area of the lake., Average of
U.S. EPA (1980) report and 1
models tended to underestimat
in this study was among thosg
course, preliminary and will

Given the strong correla
two lakes, it should be possi
specific to these lakes that
concentrations. Going a stey
transparency could be predict
chlorophyll and color. Theoy

water clarity expected from

predicted from a series of t

!

in Tinear regression plots. To account for the
Canfield (1983) and Smith (1982) included both
These multiple regression equations have iass
sed on only one nutrient parameter. Because
i11 probably lead to a higher TN:TP ratio in Lake
ession mode]l of this type is probably the most
e chlorophyll concentrations in this lake.
om this study, we also found that chlorophyll is
TN for each of the two lakes. From these
ssion equations could be formulated for East Lake
aliga. The Lake Tohopekaliga model is given in
values from southern Lake Tohopekaliga, we tested
o estimate chlorophyll concentrations in this
served values for 1976-79 were taken from the
981-82 values are from this study. A1l of the
e actual chlorophyll levels. The model developed
that performed the best. These results are, of
be re-examined after more data becomes availabie.
tion between chlorophyll and nutrients in these
ble, by the end of this study, to develop a model
will allow predictions of future chlorophyll
further, an improvement in Secchi disk
ed from the relationship of transparency with
etically then, the degree of improvement in
given reduction in nutrient loading could be
ese mathematical models.
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The main problem with this modeling effort 1ies with the uncertainty
associated with each model. This uncertainty is compounded when the predicted
value from one model is used to predict the value of another parameter in
another model. We hope to reduce this uncertainty by using chlorophyll and
Secchi depth models developed specifically for these Takes. But first, it
must be shown that lake nutrient concentrations can be reliably predicted
using a nutrient loading model. As discussed eariier, nutrient loading models
applied to Lake Tohopekaliga were not very successful for the year 1981-82.

To improve the predictive ability of these models, an accurate water budget
must be available. Modeling could also be improved by considering seasonal
and spatial variations and internal loading processes. For instance,
proposals are now being evaluated to quantify the amount of nutrients released
into the water column via sediment resuspension and to determine the magnitude
of nitrogen fixation in Lake Tohopekaliga.

The following conclusions can be drawn from these resuits. Note that
these are preliminary conclusions and may be changed after the second and
third years of data are analyzed.

(1) Trophic state indicators and a multivariate trophic state index
classify East Lake Tohopekaliga as mesotrophic and Lake Tohopekaliga
as eutrophic to hypereutrophic.

{2) The modified Vollenweider (1976) model overestimated the average
East Lake Tohopekaliga phosphorus concentration and significantly
underestimated TP for Lake Tohopekaliga. Several possible reasons
exist for the error in the latter prediction, but the most important
factor is probably the inaccuracy of the Lake Tohopekaliga water
budget. In the future, this model should be evaluated along with
other models to determine the best model(s) for these lakes.
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(3)

(4)

If it is necessary to control nitrogen inputs to Lake Tohopekaliga,
it will probably be difficult to determine maximum allowable
nitrogen loadings frpm a nitrogen input-output model unless int. ;a:
nitrogen loadings arp guantified and incorporated in the equation.
Because lake chlorophyll is significantly caorrelated with phosphorus
and nitrogen concentrations, future chiorophyll concentrations might

be predicted from fukure nutrient loading rates.
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Lakes Cypress, Hatchineha, and Kissimmee

As part of the SFWMD's assessment of the Upper Kissimmee Chain of Lakes
water quality sampling of Lakes Cypress, Hatchineha, and Kissimmee was
initiated in April of 1982. Reconnaissance sampling trips were conducted in
April and May, and in July 1982 the lower three lakes were added permanently
to this study. Sixteen stations were established in these three lakes and the
conveyance canals which interconnect them to Lake Tohopekaiiga (Fig. 25).
Discharge through the $-61 gravity structure at the south end of Lake
Tohopekaliga flows down the C-35 canal into Lake Cypress. The water may then
free flow down the C-36 canal into Lake Hatchineha, through Hatchineha down
the C-37 canal into Lake Kissimmee, and ultimately discharges by S-65 gravity
gate into the Kissimmee River. The lower three lakes are in a free flow
condition since there are no control structures between $-61 and S5-65.

The section on Lake Tohopekaliga water guality indicated a lake in an
enriched condition prone to nuisance algal blooms. Since the $-61 structure,
which constitutes the only surface outflow from Lake Tohopekaliga, discharges
into the lower three lakes it would be a good assumption that discharge
through $-61 has a degree of impact on the water quatity in Lakes Cypress,
Hatchineha, and Kissimmee,

During the study period, S-61 was relatively active discharging a total
of 245,914 acre-feet for the six month period (4/1/81 - 9/30/82). With the
exception of a three week period in the beginning of June and two one week
periods in September, S-61 continuously discharged. A1l samples were
collected either during or immediately after S-61 discharge activity.
therefore, it can be assumed that the water quality presented for the lower
three lakes reflects the impact of $5-61 discharge.
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Acknowledging that the water quality data on the lower three lakes is the
result of only five monthly trips, the water guality data presented here,
although extremely preliminary, does demonstrate some significant trends.
Table 23 presents canal and whole lake averages for some major water chemistry
parameters. For the Tower three lakes these values are summer wet season
values only and these parameters, as observed in the upper two lakes, may be
seasonally biased. Therefore, grand mean values for Lakes Tohopekaliga and
East Tohopekaliga for the same time frame are also presented for comparison.

A major trend is a general improvement in some water quality indices in
the lakes from north to south. Specific conductance, ortho and total
phosphorus, and chlorophyll a all demonstrate a general decrease from Lake
Tohopekaliga south. Other parameters such as total nitrogen, inorganic
nitrogen and chlorides display an overall decrease from Lakes Tohopekaliga to
Kissimmee with some peak intermittent values. Another trend evident in Table
23 is a general elevation of some parameters in the connecting canals,
followed by a decrease in each lake, followed by an elevation again in the
next canal. This see-saw effect from C-35 south to Lake Kissimmee was noted
for total nitrogen and ortho and total phosphorus. It may be & result of the
discharge of drain fields into these conveyance canals or a function of the
suspension of bottom sediments caused by changes in stream velocity, sediment

type, and bottom contours.
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Summary of Predominant Algal Species

Phytoplankton samples were collected concurrently with the measurement of
water quality parameters at eight sites within the Upper Kissimmee Chain of
Lakes during April and August 1982. Duplicate, composite (surface to 2 meters
depth) water samples were collected from stations AO4, BO2, BOS, BO8, C02,
004, E02, and EO5 in Lakes East Tohopekaliga, Tohopekaliga, Cypress,
Hatchineha and Kissimmee (Figure 2). Sampies were preserved in the field
using neutralized 5% formalin. Environmental Sciences Division biologists
enumerated and identified phytoplankton organisms to the genera and species
level using an inverted microscope (400X magnification) and the Utermohi
(1958) sedimentation technique.

Five major groups of algae (filamentous and coccoid blue-greens, green
algae, diatoms, and dinoflagellates) were found to dominate the Kissimmee
lakes phytoplankton. Table 24 presents a breakdown of the distribution of
these five groups within the Upper Kissimmee Chain during April and August
1982. Figures 26 and 27 summarize the relative abundance of the five major
groups at all eight sites. Appendix E Tists all phytoplankton species found
in the lakes.

April, 1982

Filamentous and coccoid blue-greens (Cyanophyceae) were the dominant
flora in Lakes Cypress, Hatchineha, and the south end of Lake Tohopekaliga
during April 1982. Three filamentous blue-greens were numerically important,

Lyngbya contorta, L. limnetica and the potential nitrogen fixing species,

Anabena spiroides. During April 1982, A. spiroides dominated the plankton of

these three lakes comprising 42-72% of the population.
Coccoid blue-greens were also common components of the phytoplankton.

Four coccoid blue-greens were important: Anacystis incerta, Anacystis cyanea,
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Anacystis montana, and Gomphosphaeria lacustris. Of these four, Anacystis

incerta was by far the most abundant.

In contrast, plankton in East Lake Tohopekaliga (Station AO4) were
dominated by two species of "armored" dinoflagellates, Peridinum spp.
representing 57% of the population. Dinoflagellates (Dinophyceae) were only
abundant at this site during April.

August, 1982

A shift in dominance was observed in samples collected in August 1982 as

filamentous blue-greens {Anabaena sp.) were replaced by the green algae

Scenedesmus gquadricauda (Chlorophyceae). Scenedesmus spp. represented 43-60%

of the total plankton in Lakes Cypress, Hatchineha, Kissimmee, and the south
end of Tohopekaliga during August.

In comparison, diatoms (Bacillariophyceae) accounted for over 83% of the
plankton at sites located in the north end of Lake Tohopekaliga. Melosira
granulata was the dominant diatom species present during August. Diatom
populations decreased southward within the chain of lakes during August and

were replaced in impartance by green algae (Scenedesmus) and coccoid blue-

greens (Anacystis).

Estimates of Phytoplankton Cell Density and Volume

Low phytoplankton populations were consistently recorded from stations
AO4 (East Lake Tohopekaliga) and station BOZ (north end of Tohopekaliga) where
average cell densities ranged from 700 - 11,900 cells/ml. Highest cell
densities occurred at station BO9 (south end of Tohopekaliga) during August
1982 where cell densities reached 250,000 cells/ml during a Scenedesmus-
Anacystis bloom. High cell densities and cell volumes were consistently
recorded at sampling sites located in the south end of Lakes Tohopekaliga,

Cypress, Hatchineha, and Kissimmee throughout 1982.
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Large populations (bloom

Anacystis incerta, Anacystis

Rhytoplankton Findings

5} of the blue-greens, Anabaena spiroides,

cyanaea, Gomphosphaeria lacustris, the green

algae Scenedesmus gquadricauda

and the diatom Melosira granulata are reported

to be indicative of highly eu
Laboratory tests and fie
blue-greens, (e.g. Anabaena a

Scenedesmus guadricauda are g

(Hutchinson, 1967). The pres
why other phyla (planktonic g
in only very low numbers at s

the southern portion of the K

trophic lakes (Palmer, 1960; Round, 19653).

1d observations have shown that bloom forming

nd Anacystis species) and the green algae
enerally inhibitory to other species of algae
ence of active inhibiting metabolites may explain
reens, diatoms, chrysophytes, etc.) are present
ites where blooms of these algae persist (i.e.

issimmee Chain of Lakes system).
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Water Quality Comparison to other South Florida Lakes

Table 25 presents a mean comparison of major water chemistry parameters

calculated for these five lakes and other lakes in central Florida.

Differences in water chemistry data collected by two different groups may be

more attributable to differences in sampling techniques, analytical

methodologies, or period of study than actual differences in water chemistry.

Although comparisons are worth discussion, they should not be regarded on an

absolute basis.

Two general trends are obvious from Table 25:

(1)

(2)

As a group, four of the five Upper Kissimmee lake chain show
generally higher levels of chlorophyll a, major nutrients,
conductivity, and chloride than the other lakes in this comparison.
Specifically, Tohopekaliga demonstrated the highest total phosphorus
and chlorophyll a, Lake Cypress the highest total nitrogen, and
Lake Hatchineha the highest color of any of the lakes in the scan.
The water quality data for the five lakes collected during this
study demonstrates a general but substantial enrichment for most
water chemistry indices over data collected by Canfield (1981).
Specifically all five lakes of this study were characterized by
higher total nitrogen, conductivity, and chlorides than comparative
data. Total phosphorus demonstrated increased levels only for the
lower three lakes. Chlorophyll a levels were lower than respective
Canfield data for Lakes East Tohopekaliga, Tohopekaliga, and

Cypress, but higher for Lakes Hatchineha and Kissimmee.
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(3) Lake Tohopekaliga demonstrates the highest mean total phosphorus
comparative survey.| Lakes Cypress, Hatchineha, and Kissimmee

display progressive|and respective improvements in water quaiity.
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APPENDIX A

Water and Materials Budget Calculations

Surface Water: Surface water hydrologic measurements were made by either

continuous recorders, discrete monthly flow measurements, or by recording the
total hours of pumping at those sites where pumping capabilities exist.

At those surface water sites where continuous hydrology data was
available, material loadings were calculated by combining the daily flow rates
for a particular time period with the corresponding chemical data. Since the
chemistry data was not collected daily, two chronologically successive
chemistry data points were averaged to produce an estimated value for the time
period between these two points. This average was then used in conjunction
with the daily flow data within the time period to compute the daily loadings.

wWhere discrete monthly measurements were made, the total flow estimated
for the month was combined with the monthly chemistry data to compute a total
monthly toad.

At the Judges Dairy and Partin's surface water pumping sites, the total
number of hours pumped between two chronologically successive sampling dates
were combined with the chemistry data at the endpoint of the time interval to
produce a total monthly Toad.

Point Sources: The point source data includes the treatment plants Sand Lake

Road, MclLeod Road, Kissimmee Main, Kissimmee Interim, St. Cloud, and Cametot
Manor. The data was supplied by the Florida Department of Environmental
Regulation in monthly operating reports. A1l of the wastewater treatment
plants monthly operating reports included daily flow data. However, most of
the plants had only a 1imited number of chemistry values.
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The Sand Lake Road and 1

the most complete chemical dgta sets.

plants were computed from thg
daily chemistry data for the
The material loadings fq

annual flow with the average

he McLeod Road wastewater treatment plants had

Material loadings for both of thaze

total monthly flow combined with the averay of
month to compute a total monthly load.
r the Kissimmee Main plant combined the total

annual chemistry data. In the case of nitrogen,

the average concentration in¢luded an additional three month period beyond the

annual endpoint (September, 1983}.

This was done to prevent overestimating

the nitrogen budget based up¢n only two chemistry points which appeared to be

excessive.

Material loadings for the Kissimmee Interim plant were computed by

combining the total annual f
underdrains before discharge

available for this site, the

Kjeldahl nitrogen and nitrate data.

to Mil11 Slough.

ow with the average concentration measured at two

Since nitrite (NOs) data was not

total nitrogen load reflects only the total

Total annual flow at the St. Cloud wastewater treatment plant was

combined with the average chemical data available to compute the annual

loading data for this point Source.

nutrient data available.

This site had the least amount of

At the time of this writing, flow data was missing for three of the

twelve months at the Camelot

Manor wastewater treatment plant. Therefore, the

average monthly flow was computed from the available data. This average was

then used in place of each of the missing three months to produce an annual

total flow. This total was fthen combined with the available average chemistry

data.




Rainwater:

Due to the lack of rainfall chemistry data during months deficient in
rain, monthly rainfall loadings could not be computed. Therefore, the total
annual rainfall, based on the average of four stations for Lake Tohopekaliga
and three stations for East Lake Tohopekaliga and adjusted for each lake area
was combined with the average annual chemistry data to estimate the total
annual load.

Groundwater: The groundwater seepage load to lLakes Tohopekaliga and East Lake
Tohopekaliga was computed by totaliing the average annual load from each of
three and four piezometer wells, respectively. The total load for each site
combined the total annual flow over the time period with the average annual
concentration for that well. Although chemical measurements were not made on
the groundwater supplied to East Lake Tohopekaliga's eastern side until the
1982-83 study year, the materials budget for this area of East Lake
Tohopekaliga was computed for the 1981-82 study year with this more recent

chemistry data and the former hydrology data.
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APPENDIX B

WATER QUALITY SUMMARY OF EAST LAKE TOHOPEKALIGA TRIBUTARIES
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APPENDIX C

WATER QUALITY SUMMARY OF LAKE TOHOPEKALIGA TRIBUTARIES
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DEFINITION OF TERMS
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APPENDIX D

Term Definitions

Flow-Weighted Concentration: This term is equal to the material load for
given time period divided by the total flow for the same period.

Areal Loading Rate (Lp, Ly or Lg): This term is equal to the material
load for a given time period divided by the surface area of the
receiving lake.

Water Residence Time (t1,): This term is equal to the lake water volume
divided by the surface outflows (excluding evaporation). This represents
the period of time that water is present in a lake with respect to
nutrients, since nutrients are not lost by evapotranspiration.

Hydraulic Loading Rate (gg¢)}: This term is calculated by dividing the
surface water inflows (excluding rainfall) by the surface area of the
lake. This represents the height (m/yr) that the surface inflows would
raise the lake level during a year, assuming no loss of water through
evapotranspiration or outflow.

Other Sinks: This term is computed as the difference between the total
inflow, total outflow, and change in storage terms and represents the
combined effects from umnmeasured inflows, unmeasured outflows, and the
analytical and hydrological error associated with the budget.

Error (Q): This term equals the other sinks term divided by the lake
volume times 100 and represents the percent over or underestimation of
the water budget to predict a change in the lake volume based upon
inflows and outflows.

Error {chloride):
This term = { (Other C1 sinks (tonnes) X 810.7360) } 1loo
( {Avg. lake conc. (mg/L) X avg. lake volume) )

Since chloride is a conservative variable, the chloride budget
theoretically should egual the water budget in its ability to account for
all additions and losses of this ion over time and is a good accuracy
check.



APPENDIX E

LIST OF DOMINANT AND COMMON PHYTOPLANKTON
SPECIES FOR THE UPPER KISSIMMEE CHAIN OF LAKES

EAST LAKE TOHOPEKALIGA

AND
LAKES TOHOPEKALIGA, CYPRESS, HATCHINEHA, AND KISSIMMEE
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TABLE E-1

LIST OF DOMINANT AND COMMON* PHYTOPLANKTON SPECIES OBSERVED FROM

EAST LAKE TOHO.

EAST [AKE TOHO PHYTOPLANKTON
APRIL-OCTOBER 1982

Myxophyceae (Blue-greens)
Anacystis incerta

Aphanizomenon flos-agquae
Lyngbya limnetica
Schizothrix calcicola (E1)

Chlorophyceae (Green Algae)
Ankistrodesmus convolutus
Chlorella sp.

Chlorococcum sSp.
Dimorphococcus lunatus
Dictyosphaerium sp.
Dictyosphaerium pulchellum
Golenkinia radiata
Pediastrum boryanum
Scenedesmus sp. |1
Scenedesmus abundans
Scenedesmus acuminatus
Scenedesmus quadricauda

Desmids
Staurastrum sp. 1
Staurastrum dejectum

Bacillariophyceae (Diatoms)
Melosira granulata

Melosira granulata v. angustissima
Rhizosolenia sp. 1

Chrysophycede
Dinobryen divergens
Mallomonas caudata
Ophiocytium captitatum

Dinophyceae (Dinoflageliates)
Peridinium cinctum
Peridinium sp. 2

Euglenophyceae
Euglena sp.

Footnote:

* Includes species comprising >1% of the total population

D
A
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found as a dominant species at one or more
found in great abundance {but not a dominan
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TABLE £-2

LIST OF DOMINANT AND COMMON* PHYTOPLANKTON SPECIES OBSERVED FROM
LAKES TOHO, CYPRESS, HATCHINEHA, AND KISSIMMEE.

KISSIMMEE [CHAIN OF LAKES PHYTOPLARKTON
APRIL-GOCTOBER 1982

Myxophyceae (Blue-greens)
Agmenellum sp.

Anabaena sprioides
Anacytis cyanea
Anacystis incerta
Anacystis montana
Aphanizomenon flos-aguae
Gomphospheria lacustris
Lyngbya contorta

Lyngbya limnetica
Microcoleus lyngbyacus
Raphidiopsis curvata
Schizothrix calcicola (E1) A

o e ) o= e

Chlorophyceae (Green Algae)
Ankistrodesmus falcatus v. acicularis A
Chlamydomonas spp.
Chlorococcum sp.
Coelastrum spp.

Dictyosphaerium pulchellum A
Dimorphococcus Tunatus A
tlaktothrix gelatinosa

Golenkinia radiata A

Hormidium klebsii
Kirchneriella contorta
Kirchneriella subsolitaria
Micratinium pusillum
Chodatella subsalsa
Oocystis spp.

Pediastrum boryanum
Pediastrum duplex v. gracilliu
Pediastrum simplex
Pediastrum tetras
Scenedesmus abundans ' A
Scenedesmus abundans v. longicauda
Scenedesmus acuminatus
Scenedesmus brasiliensis
Scenedesmus denticulatus
Scenedesmus dimorphus A
Scenedesmus hystrix
Scenedesmus obligus
Scenedesmus Tongus
Scenedesmus parisiensis
Scenedesmus quadricauda D
Scenedesmus quadricauda v. maxlima A
Tetraedron trigonum
Tetrastrum staurogeniaeforme
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TABLE E-2 (Continued)

Desmids

Closterium c¢f. acutum
Euastrum sp. 1
Staurastrum sp. 1
Staurastrum lativenter

Bacillariophyceae (Diatoms)
Cyclotella menghiniana

Fragillaria construens

Fragillaria construens v. subsalina
Fragillaria pinnata

Melosira distans

Melosira granulata

Melosira granulata v. angustissima
Nitzschia sp.

Nitzschia acicularis

Rhizosolenia sp. 1

Stephanodiscus astraea v. minutula
Stephanodiscus invisitatus

»0OP I>

Chrysophyceae
Binobryon spp.
Mallonomas caudata

Dinophyceae (Dinoflagellates)
Peridinium sp. 2
Peridinium cintum

Euglenophyceae
Euglena sp.
Phacus sp.
Trachelomonas

Cryptophyceae
Cryptomonas sp.

footnote:

* Inciudes species comprising >1% of the total population

= found as a dominant species at one or more sites

found in great abundance {but not a dominant species) at one or more sites

D
A
Blue-green references: Drouet and Daily (1956), Drouet (1968, 1973); green
algae references, Prescott (1952}, Whitford and Schumacher (1973), G.M. Smith
(1933); Diatom reference, Hustedt (1930}, Patrick and Reimer (1966, 1973).

E-4



